Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 5: 144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728210

RESUMO

Zinc is vital for the structure and function of ~3000 human proteins and hence plays key physiological roles. Consequently, impaired zinc homeostasis is associated with various human diseases including cancer. Intracellular zinc levels are tightly regulated by two families of zinc transporters: ZIPs and ZnTs; ZIPs import zinc into the cytosol from the extracellular milieu, or from the lumen of organelles into the cytoplasm. In contrast, the vast majority of ZnTs compartmentalize zinc within organelles, whereas the ubiquitously expressed ZnT1 is the sole zinc exporter. Herein, we explored the hypothesis that qualitative and quantitative alterations in ZnT1 activity impair cellular zinc homeostasis in cancer. Towards this end, we first used bioinformatics to analyze inactivating mutations in ZIPs and ZNTs, catalogued in the COSMIC and gnomAD databases, representing tumor specimens and healthy population controls, respectively. ZnT1, ZnT10, ZIP8, and ZIP10 showed extremely high rates of loss of function mutations in cancer as compared to healthy controls. Analysis of the putative functional impact of missense mutations in ZnT1-ZnT10 and ZIP1-ZIP14, using homologous protein alignment and structural predictions, revealed that ZnT1 displays a markedly increased frequency of predicted functionally deleterious mutations in malignant tumors, as compared to a healthy population. Furthermore, examination of ZnT1 expression in 30 cancer types in the TCGA database revealed five tumor types with significant ZnT1 overexpression, which predicted dismal prognosis for cancer patient survival. Novel functional zinc transport assays, which allowed for the indirect measurement of cytosolic zinc levels, established that wild type ZnT1 overexpression results in low intracellular zinc levels. In contrast, overexpression of predicted deleterious ZnT1 missense mutations did not reduce intracellular zinc levels, validating eight missense mutations as loss of function (LoF) mutations. Thus, alterations in ZnT1 expression and LoF mutations in ZnT1 provide a molecular mechanism for impaired zinc homeostasis in cancer formation and/or progression.

2.
J Cell Mol Med ; 23(2): 828-840, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450693

RESUMO

Loss of function (LoF) mutations in the zinc transporter SLC30A2/ZnT2 result in impaired zinc secretion into breast milk consequently causing transient neonatal zinc deficiency (TNZD) in exclusively breastfed infants. However, the frequency of TNZD causing alleles in the general population is yet unknown. Herein, we investigated 115 missense SLC30A2/ZnT2 mutations from the ExAC database, equally distributed in the entire coding region, harboured in 668 alleles in 60 706 healthy individuals of diverse ethnicity. To estimate the frequency of LoF SLC30A2/ZnT2 mutations in the general population, we used bioinformatics tools to predict the potential impact of these mutations on ZnT2 functionality, and corroborated these predictions by a zinc transport assay in human MCF-7 cells. We found 14 missense mutations that were markedly deleterious to zinc transport. Together with two conspicuous LoF mutations in the ExAC database, 26 SLC30A2/ZnT2 alleles harboured deleterious mutations, suggesting that at least 1 in 2334 newborn infants are at risk to develop TNZD. This high frequency of TNZD mutations combined with the World Health Organization-promoted increase in the rate of exclusive breastfeeding highlights the importance of genetic screening for inactivating SLC30A2/ZnT2 mutations in the general population for the early diagnosis and prevention of TNZD.


Assuntos
Proteínas de Transporte de Cátions/genética , Transtornos do Crescimento/genética , Mutação com Perda de Função , Leite Humano/química , Mutação de Sentido Incorreto , Zinco/deficiência , Alelos , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/deficiência , Biologia Computacional , Diagnóstico Precoce , Feminino , Expressão Gênica , Frequência do Gene , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/metabolismo , Humanos , Lactente , Recém-Nascido , Transporte de Íons , Células MCF-7 , Masculino , Leite Humano/metabolismo , Estabilidade Proteica , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...