Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 21(Suppl 14): 359, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998692

RESUMO

BACKGROUND: The abundance of molecular profiling of breast cancer tissues entailed active research on molecular marker-based early diagnosis of metastasis. Recently there is a surging interest in combining gene expression with gene networks such as protein-protein interaction (PPI) network, gene co-expression (CE) network and pathway information to identify robust and accurate biomarkers for metastasis prediction, reflecting the common belief that cancer is a systems biology disease. However, controversy exists in the literature regarding whether network markers are indeed better features than genes alone for predicting as well as understanding metastasis. We believe much of the existing results may have been biased by the overly complicated prediction algorithms, unfair evaluation, and lack of rigorous statistics. In this study, we propose a simple approach to use network edges as features, based on two types of networks respectively, and compared their prediction power using three classification algorithms and rigorous statistical procedure on one of the largest datasets available. To detect biomarkers that are significant for the prediction and to compare the robustness of different feature types, we propose an unbiased and novel procedure to measure feature importance that eliminates the potential bias from factors such as different sample size, number of features, as well as class distribution. RESULTS: Experimental results reveal that edge-based feature types consistently outperformed gene-based feature type in random forest and logistic regression models under all performance evaluation metrics, while the prediction accuracy of edge-based support vector machine (SVM) model was poorer, due to the larger number of edge features compared to gene features and the lack of feature selection in SVM model. Experimental results also show that edge features are much more robust than gene features and the top biomarkers from edge feature types are statistically more significantly enriched in the biological processes that are well known to be related to breast cancer metastasis. CONCLUSIONS: Overall, this study validates the utility of edge features as biomarkers but also highlights the importance of carefully designed experimental procedures in order to achieve statistically reliable comparison results.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Máquina de Vetores de Suporte , Área Sob a Curva , Neoplasias da Mama/genética , Feminino , Redes Reguladoras de Genes/genética , Humanos , Modelos Logísticos , Metástase Neoplásica , Mapas de Interação de Proteínas/genética , Curva ROC
2.
IEEE Trans Neural Syst Rehabil Eng ; 28(5): 1128-1137, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32217479

RESUMO

OBJECTIVE: Recent research has demonstrated improved performance of a brain-computer interface (BCI) using fusion based approaches. This paper proposes a novel decision-making selector (DMS) to integrate classification decisions of different frequency recognition methods based on canonical correlation analysis (CCA) which were used in decoding steady state visual evoked potentials (SSVEPs). METHODS: The DMS method selects a decision more likely to be correct from two methods namely as M1 and M2 by separating the M1-false and M2-false trials. To measure the uncertainty of each decision, feature vectors were extracted using the largest and second largest correlation coefficients corresponding to all the stimulus frequencies. The proposed method was evaluated by integrating all pairs of 7 CCA-based algorithms, including CCA, individual template-based CCA (ITCCA), multi-set CCA (MsetCCA), L1-regularized multi-way CCA (L1-MCCA), filter bank CCA (FBCCA), extended CCA (ECCA), and task-related component analysis (TRCA). MAIN RESULTS: The experimental results obtained from a 40-target dataset of thirty-five subjects showed that the proposed DMS method was validated to obtain an enhanced performance by integrating the algorithms with close accuracies. CONCLUSION: The results suggest that the proposed DMS method is effective in integrating decisions of different methods to improve the performance of SSVEP-based BCIs.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Algoritmos , Eletroencefalografia , Humanos , Análise Multivariada , Estimulação Luminosa
3.
IEEE Trans Neural Syst Rehabil Eng ; 27(3): 533-542, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30716043

RESUMO

This paper presents a new brain-robot interaction system by fusing human and machine intelligence to improve the real-time control performance. This system consists of a hybrid P300 and steady-state visual evoked potential (SSVEP) mode conveying a human being's intention, and the machine intelligence combining a fuzzy-logic-based image processing algorithm with multi-sensor fusion technology. A subject selects an object of interest via P300, and the classification algorithm transfers the corresponding parameters to an improved fuzzy color extractor for object extraction. A central vision tracking strategy automatically guides the NAO humanoid robot to the destination selected by the subject intentions represented by brainwaves. During this process, human supervises the system at high level, while machine intelligence assists the robot in accomplishing tasks by analyzing image feeding back from the camera, distance monitoring using out-of-gauge alarms from sonars, and collision detecting from bumper sensors. In this scenario, the SSVEP takes over the situations in which the machine intelligence cannot make decisions. The experimental results show that the subjects can control the robot to a destination of interest, with fewer commands than only using a brain-robot interface. Therefore, the fusion of human and machine intelligence greatly alleviates the brain load and enhances the robot executive efficiency of a brain-robot interaction system.


Assuntos
Inteligência Artificial , Interfaces Cérebro-Computador , Inteligência , Robótica/métodos , Algoritmos , Eletroencefalografia , Potenciais Evocados P300/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Lógica Fuzzy , Humanos , Processamento de Imagem Assistida por Computador , Visão Ocular/fisiologia
4.
Genomics ; 111(1): 17-23, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-27453286

RESUMO

To develop accurate prognostic models is one of the biggest challenges in "omics"-based cancer research. Here, we propose a novel computational method for identifying dysregulated gene subnetworks as biomarkers to predict cancer recurrence. Applying our method to the DNA methylome of endometrial cancer patients, we identified a subnetwork consisting of differentially methylated (DM) genes, and non-differentially methylated genes, termed Epigenetic Connectors (EC), that are topologically important for connecting the DM genes in a protein-protein interaction network. The ECs are statistically significantly enriched in well-known tumorgenesis and metastasis pathways, and include known epigenetic regulators. Importantly, combining the DMs and ECs as features using a novel random walk procedure, we constructed a support vector machine classifier that significantly improved the prediction accuracy of cancer recurrence and outperformed several alternative methods, demonstrating the effectiveness of our network-based approach.


Assuntos
Algoritmos , Biomarcadores Tumorais , Metilação de DNA , Neoplasias do Endométrio , Recidiva Local de Neoplasia , Ilhas de CpG , DNA de Neoplasias , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Epigenômica , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Genéticos , Prognóstico , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de DNA
5.
Bioinformatics ; 29(3): 355-64, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23235927

RESUMO

MOTIVATION: Recent advances in technology have dramatically increased the availability of protein-protein interaction (PPI) data and stimulated the development of many methods for improving the systems level understanding the cell. However, those efforts have been significantly hindered by the high level of noise, sparseness and highly skewed degree distribution of PPI networks. Here, we present a novel algorithm to reduce the noise present in PPI networks. The key idea of our algorithm is that two proteins sharing some higher-order topological similarities, measured by a novel random walk-based procedure, are likely interacting with each other and may belong to the same protein complex. RESULTS: Applying our algorithm to a yeast PPI network, we found that the edges in the reconstructed network have higher biological relevance than in the original network, assessed by multiple types of information, including gene ontology, gene expression, essentiality, conservation between species and known protein complexes. Comparison with existing methods shows that the network reconstructed by our method has the highest quality. Using two independent graph clustering algorithms, we found that the reconstructed network has resulted in significantly improved prediction accuracy of protein complexes. Furthermore, our method is applicable to PPI networks obtained with different experimental systems, such as affinity purification, yeast two-hybrid (Y2H) and protein-fragment complementation assay (PCA), and evidence shows that the predicted edges are likely bona fide physical interactions. Finally, an application to a human PPI network increased the coverage of the network by at least 100%. AVAILABILITY: www.cs.utsa.edu/∼jruan/RWS/.


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas/métodos , Análise por Conglomerados , Humanos , Complexos Multiproteicos/metabolismo , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proteome Sci ; 11(Suppl 1): S9, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24564887

RESUMO

To understand the function of protein complexes and their association with biological processes, a lot of studies have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering algorithms and further analysis of their interactions.

7.
BMC Bioinformatics ; 12 Suppl 12: S2, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22168340

RESUMO

BACKGROUND: Several large-scale gene co-expression networks have been constructed successfully for predicting gene functional modules and cis-regulatory elements in Arabidopsis (Arabidopsis thaliana). However, these networks are usually constructed and analyzed in an ad hoc manner. In this study, we propose a completely parameter-free and systematic method for constructing gene co-expression networks and predicting functional modules as well as cis-regulatory elements. RESULTS: Our novel method consists of an automated network construction algorithm, a parameter-free procedure to predict functional modules, and a strategy for finding known cis-regulatory elements that is suitable for consensus scanning without prior knowledge of the allowed extent of degeneracy of the motif. We apply the method to study a large collection of gene expression microarray data in Arabidopsis. We estimate that our co-expression network has ~94% of accuracy, and has topological properties similar to other biological networks, such as being scale-free and having a high clustering coefficient. Remarkably, among the ~300 predicted modules whose sizes are at least 20, 88% have at least one significantly enriched functions, including a few extremely significant ones (ribosome, p < 1E-300, photosynthetic membrane, p < 1.3E-137, proteasome complex, p < 5.9E-126). In addition, we are able to predict cis-regulatory elements for 66.7% of the modules, and the association between the enriched cis-regulatory elements and the enriched functional terms can often be confirmed by the literature. Overall, our results are much more significant than those reported by several previous studies on similar data sets. Finally, we utilize the co-expression network to dissect the promoters of 19 Arabidopsis genes involved in the metabolism and signaling of the important plant hormone gibberellin, and achieved promising results that reveal interesting insight into the biosynthesis and signaling of gibberellin. CONCLUSIONS: The results show that our method is highly effective in finding functional modules from real microarray data. Our application on Arabidopsis leads to the discovery of the largest number of annotated Arabidopsis functional modules in the literature. Given the high statistical significance of functional enrichment and the agreement between cis-regulatory and functional annotations, we believe our Arabidopsis gene modules can be used to predict the functions of unknown genes in Arabidopsis, and to understand the regulatory mechanisms of many genes.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Algoritmos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais
8.
J Biol Chem ; 286(42): 36248-57, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21865163

RESUMO

Many mammalian genes are occupied by paused RNA polymerase II (pol II) in the promoter-proximal region on both sides of the transcription start site. However, the impact of pol II pausing on gene expression and cell biology is not fully understood. In this study, we used a Cre-Lox system to conditionally knock out the b subunit of mouse negative elongation factor (Nelf-b), a key pol II-pausing factor, in mouse embryonic fibroblasts. We found that Nelf-b was associated with the promoter-proximal region of the majority of expressed genes, yet genetic ablation of Nelf-b only affected the steady-state mRNA levels of a small percentage of the Nelf-b-associated genes. Interestingly, Nelf-b deletion also increased levels of transcription start site upstream transcripts at multiple negative elongation factor-associated genes. The direct target genes of Nelf-b were highly enriched with those involved in the control of cell growth and cell death. Correspondingly, Nelf-b knock-out mouse embryonic fibroblasts exhibited slower progression from quiescence to proliferation, as well as in a cycling cell population. Furthermore, Nelf-b deletion also resulted in increased apoptosis. Thus, the genetic and genomic studies provide new physiological and molecular insight into Nelf-mediated pol II pausing.


Assuntos
Proliferação de Células , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Animais , Apoptose/genética , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Deleção de Genes , Genoma/fisiologia , Camundongos , Proteínas Nucleares/genética , RNA Polimerase II/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas de Ligação a RNA
9.
BioData Min ; 3: 9, 2010 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-21144057

RESUMO

BACKGROUND: Identifying approximately repeated patterns, or motifs, in DNA sequences from a set of co-regulated genes is an important step towards deciphering the complex gene regulatory networks and understanding gene functions. RESULTS: In this work, we develop a novel motif finding algorithm (PSO+) using a population-based stochastic optimization technique called Particle Swarm Optimization (PSO), which has been shown to be effective in optimizing difficult multidimensional problems in continuous domains. We propose a modification of the standard PSO algorithm to handle discrete values, such as characters in DNA sequences. The algorithm provides several features. First, we use both consensus and position-specific weight matrix representations in our algorithm, taking advantage of the efficiency of the former and the accuracy of the latter. Furthermore, many real motifs contain gaps, but the existing methods usually ignore them or assume a user know their exact locations and lengths, which is usually impractical for real applications. In comparison, our method models gaps explicitly, and provides an easy solution to find gapped motifs without any detailed knowledge of gaps. Our method allows the presence of input sequences containing zero or multiple binding sites. CONCLUSION: Experimental results on synthetic challenge problems as well as real biological sequences show that our method is both more efficient and more accurate than several existing algorithms, especially when gaps are present in the motifs.

10.
Int J Comput Biol Drug Des ; 2(4): 323-39, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20090174

RESUMO

Discovering DNA motifs from co-expressed or co-regulated genes is an important step towards deciphering complex gene regulatory networks and understanding gene functions. Despite significant improvement in the last decade, it still remains one of the most challenging problems in computational molecular biology. In this work, we propose a novel motif finding algorithm that finds consensus patterns using a population-based stochastic optimisation technique called Particle Swarm Optimisation (PSO), which has been shown to be effective in optimising difficult multidimensional problems in continuous domains. We propose to use a word dissimilarity graph to remap the neighborhood structure of the solution space of DNA motifs, and propose a modification of the naive PSO algorithm to accommodate discrete variables. In order to improve efficiency, we also propose several strategies for escaping from local optima and for automatically determining the termination criteria. Experimental results on simulated challenge problems show that our method is both more efficient and more accurate than several existing algorithms. Applications to several sets of real promoter sequences also show that our approach is able to detect known transcription factor binding sites, and outperforms two of the most popular existing algorithms.


Assuntos
Algoritmos , Biologia Computacional/métodos , DNA/química , Análise de Sequência de DNA/métodos , Inteligência Artificial , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...