Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(6): 836-853, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38394685

RESUMO

Mucin-16 (MUC16) is a target for antibody-mediated immunotherapy in pancreatic ductal adenocarcinoma (PDAC) among other malignancies. The MUC16-specific monoclonal antibody AR9.6 has shown promise for PDAC immunotherapy and imaging. Here, we report the structural and biological characterization of the humanized AR9.6 antibody (huAR9.6). The structure of huAR9.6 was determined in complex with a MUC16 SEA (Sea urchin sperm, Enterokinase, Agrin) domain. Binding of huAR9.6 to recombinant, shed, and cell-surface MUC16 was characterized, and anti-PDAC activity was evaluated in vitro and in vivo. HuAR9.6 bound a discontinuous, SEA domain epitope with an overall affinity of 88 nmol/L. Binding affinity depended on the specific SEA domain(s) present, and glycosylation modestly enhanced affinity driven by favorable entropy and enthalpy and via distinct transition state thermodynamic pathways. Treatment with huAR9.6 reduced the in vitro growth, migration, invasion, and clonogenicity of MUC16-positive PDAC cells and patient-derived organoids (PDO). HuAR9.6 blocked MUC16-mediated ErbB and AKT activation in PDAC cells, PDOs, and patient-derived xenografts and induced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. More importantly, huAR9.6 treatment caused substantial PDAC regression in subcutaneous and orthotopic tumor models. The mechanism of action of huAR9.6 may depend on dense avid binding to homologous SEA domains on MUC16. The results of this study validate the translational therapeutic potential of huAR9.6 against MUC16-positive PDACs.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno Ca-125 , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Antígeno Ca-125/imunologia , Antígeno Ca-125/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Proliferação de Células , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Feminino
2.
Appl Microbiol Biotechnol ; 108(1): 232, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396192

RESUMO

Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.


Assuntos
Anti-Infecciosos , Antígenos de Bactérias , Animais , Proteínas da Membrana Bacteriana Externa , Anticorpos , Bactérias Gram-Negativas , Anticorpos Antibacterianos , Vacinas Bacterianas , Mamíferos
3.
Methods Mol Biol ; 2702: 489-540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679637

RESUMO

Next-generation DNA sequencing (NGS) technologies have made it possible to interrogate antibody repertoires to unprecedented depths, typically via sequencing of cDNAs encoding immunoglobulin variable domains. In the absence of heavy-light chain pairing, the variable domains of heavy chain-only antibodies (HCAbs), referred to as single-domain antibodies (sdAbs), are uniquely amenable to NGS analyses. In this chapter, we provide simple and rapid protocols for producing and sequencing multiplexed immunoglobulin variable domain (VHH, VH, or VL) amplicons derived from a variety of sources using the Illumina MiSeq platform. Generation of such amplicon libraries is relatively inexpensive, requiring no specialized equipment and only a limited set of PCR primers. We also present several applications of NGS to sdAb discovery and engineering, including: (1) evaluation of phage-displayed sdAb library sequence diversity and monitoring of panning experiments; (2) identification of sdAbs of predetermined epitope specificity following competitive elution of phage-displayed sdAb libraries; (3) direct selection of B cells expressing antigen-specific, membrane-bound HCAb using antigen-coupled magnetic beads and identification of antigen-specific sdAbs, and (4) affinity maturation of lead sdAbs using tandem phage display selection and NGS. These methods can easily be adapted to other types of proteins and libraries and expand the utility of in vitro display technology.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Sequenciamento de Nucleotídeos em Larga Escala , Tecnologia , Linfócitos B , Técnicas de Visualização da Superfície Celular , Cadeias Pesadas de Imunoglobulinas/genética
4.
Appl Microbiol Biotechnol ; 107(14): 4567-4580, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37284893

RESUMO

Acinetobacter baumannii is a Gram-negative bacterial pathogen that exhibits high intrinsic resistance to antimicrobials, with treatment often requiring the use of last-resort antibiotics. Antibiotic-resistant strains have become increasingly prevalent, underscoring a need for new therapeutic interventions. The aim of this study was to use A. baumannii outer membrane vesicles as immunogens to generate single-domain antibodies (VHHs) against bacterial cell surface targets. Llama immunization with the outer membrane vesicle preparations from four A. baumannii strains (ATCC 19606, ATCC 17961, ATCC 17975, and LAC-4) elicited a strong heavy-chain IgG response, and VHHs were selected against cell surface and/or extracellular targets. For one VHH, OMV81, the target antigen was identified using a combination of gel electrophoresis, mass spectrometry, and binding studies. Using these techniques, OMV81 was shown to specifically recognize CsuA/B, a protein subunit of the Csu pilus, with an equilibrium dissociation constant of 17 nM. OMV81 specifically bound to intact A. baumannii cells, highlighting its potential use as a targeting agent. We anticipate the ability to generate antigen-specific antibodies against cell surface A. baumannii targets could provide tools for further study and treatment of this pathogen. KEY POINTS: •Llama immunization with bacterial OMV preparations for VHH generation •A. baumannii CsuA/B, a pilus subunit, identified by mass spectrometry as VHH target •High-affinity and specific VHH binding to CsuA/B and A. baumannii cells.


Assuntos
Acinetobacter baumannii , Camelídeos Americanos , Animais , Acinetobacter baumannii/metabolismo , Membrana Celular/metabolismo , Antibacterianos/metabolismo , Proteínas de Membrana/metabolismo
5.
Angew Chem Int Ed Engl ; 57(29): 8891-8895, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29808513

RESUMO

The measurement of physicochemical parameters in living cells can provide information on individual cellular organelles, helping us to understand subcellular function in health and disease. While organelle-specific chemical probes have allowed qualitative evaluation of microenvironmental variations, the simultaneous quantification of mitochondrial local microviscosity (ηm ) and micropolarity (ϵm ), along with concurrent structural variations, has remained an unmet need. Herein, we describe a new multifunctional mitochondrial probe (MMP) for simultaneous monitoring of ηm and ϵm by fluorescence lifetime and emission intensity recordings, respectively. The MMP enables highly precise measurements of ηm and ϵm in the presence of a variety of agents perturbing cellular function, and the observed changes can also be correlated with alterations in mitochondrial network morphology and motility. This strategy represents a promising tool for the analysis of subtle changes in organellar structure.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Mitocôndrias/química , Mitocôndrias/ultraestrutura , Quinoxalinas/química , Células HeLa , Humanos , Microscopia de Fluorescência , Imagem Óptica , Peptídeos/química , Espectrometria de Fluorescência , Viscosidade
6.
J Am Chem Soc ; 139(28): 9455-9458, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28664723

RESUMO

Mitochondria-penetrating peptides (MPPs) are specific targeting vectors for the localization of small molecules to the mitochondrial matrix. Mitochondrial targeting of small molecules has enabled the development of a number of potential therapeutics and chemical probes. However, the need for covalent conjugation of small molecules to MPPs can negatively affect the activity of the appended cargo against its cellular target. Here, we describe cleavable linkers designed for the traceless release of chemical cargo from MPPs following mitochondrial transit. The cleavage kinetics of a number of disulfides were investigated using a fluorescent reporter system in order to optimize linker stability for mitochondrial release. The stability of mono- and disubstituted disulfides was determined to be sufficient during transit through the cytosol while still allowing for release of the cargo within 24 h. This linker system successfully released the compound Luminespib, an HSP90 inhibitor, which was deactivated by direct MPP conjugation. The releasable conjugate regenerated Luminespib activity and induced mitochondrial phenotypes of HSP90 inhibition. This linker may prove useful in expanding the repertoire of small molecules that can be used with mitochondrial targeting vectors.


Assuntos
Corantes Fluorescentes/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Resorcinóis/farmacologia , Bibliotecas de Moléculas Pequenas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Corantes Fluorescentes/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isoxazóis/química , Isoxazóis/metabolismo , Células K562 , Microscopia de Fluorescência , Mitocôndrias/química , Estrutura Molecular , Peptídeos/química , Resorcinóis/química , Resorcinóis/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
7.
Cell Chem Biol ; 23(8): 917-27, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27478157

RESUMO

Mitochondria are energy-producing organelles with essential functions in cell biology, and mitochondrial dysfunction is linked to a wide range of human diseases. Efforts to better understand mitochondrial biology have been limited by the lack of tools for manipulating and detecting processes occurring within the organelle. Here, we highlight recent significant advances in mitochondrial chemical biology that have produced new tools and techniques for studying mitochondria. Specifically, we focus on the development of chemical tools to perturb mitochondrial biochemistry, probes allowing precise measurement of mitochondrial function, and new techniques for high-throughput characterization of the mitochondrial proteome. Taken together, these advances in chemical biology will enable exciting new directions in mitochondrial research.


Assuntos
Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Animais , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia
8.
Acc Chem Res ; 49(9): 1893-902, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27529125

RESUMO

Mitochondria are organelles with critical roles in key processes within eukaryotic cells, and their dysfunction is linked with numerous diseases including neurodegenerative disorders and cancer. Pharmacological manipulation of mitochondrial function is therefore important both for basic science research and eventually, clinical medicine. However, in comparison to other organelles, mitochondria are difficult to access due to their hydrophobic and dense double membrane system as well as their negative membrane potential. To tackle the challenge of targeting these important subcellular compartments, significant effort has been put forward to develop mitochondria-targeted systems capable of transporting bioactive cargo into the mitochondrial interior. Systems now exist that utilize small molecule, peptide, liposome, and nanoparticle-based transport. The vectors available vary in size and structure and can facilitate transport of a variety of compounds for mitochondrial delivery. Notably, peptide-based delivery scaffolds offer attractive features such as ease of synthesis, tunability, biocompatibility, and high uptake both in cellulo and in vivo. Owing to their simple and modular synthesis, these peptides are highly adaptable for delivering chemically diverse cargo. Key design features of mitochondria-targeted peptides include cationic charge, which allows them to harness the negative membrane potential of mitochondria, and lipophilicity, which permits favorable interaction with hydrophobic membranes of mitochondria. These peptides have been covalently tethered to target therapeutic agents, including anticancer drugs, to enhance their drug properties, and to provide probes for mitochondrial biology. Interestingly, mitochondria-targeted DNA damaging agents demonstrate high potency and the ability to evade resistance mechanisms and off-target effects. Moreover, a combination of mitochondria-targeted DNA damaging agents was applied to an siRNA screen for the elucidation of poorly understood mitochondrial DNA repair and replication pathways. In this work, a variety of novel proteins were identified that are essential for the maintenance of mitochondrial nucleic acids. Mitochondria-targeted peptides have also been used to increase the therapeutic window of antibacterial drugs with significant mammalian toxicity. Given the evolutionary similarity of mitochondria and bacteria, peptides are effective transporters that can target both of these entities. These antimicrobial peptides are highly effective even in difficult to target intracellular bacteria which reside within host cells. This peptide-based approach to targeting mitochondria has provided a variety of insights into the "druggability" of mitochondria and new biological processes that could be future drug targets. Nevertheless, the mitochondrial-targeting field is quite nascent and many exciting applications of organelle-specific conjugates remain to be explored. In this Account, we highlight the development and optimization of the mitochondria-penetrating peptides that our laboratory has developed, the unique applications of mitochondria-targeted bioactive cargo, and offer a perspective on important directions for the field.


Assuntos
Portadores de Fármacos/metabolismo , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , DNA/química , Dano ao DNA , Portadores de Fármacos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Membranas Mitocondriais/metabolismo , Peptídeos/química
9.
ACS Chem Biol ; 9(2): 323-33, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24410267

RESUMO

The mitochondria within human cells play a major role in a variety of critical processes involved in cell survival and death. An understanding of mitochondrial involvement in various human diseases has generated an appreciable amount of interest in exploring this organelle as a potential drug target. As a result, a number of strategies to probe and combat mitochondria-associated diseases have emerged. Access to mitochondria-specific delivery vectors has allowed the study of biological processes within this intracellular compartment with a heightened level of specificity. In this review, we summarize the features of existing delivery vectors developed for targeting probes and therapeutics to this highly impermeable organelle. We also discuss the major applications of mitochondrial targeting of bioactive molecules, which include the detection and treatment of oxidative damage, combating bacterial infections, and the development of new therapeutic approaches for cancer. Future directions include the assessment of the therapeutic benefit achieved by mitochondrial targeting for treatment of disease in vivo. In addition, the availability of mitochondria-specific chemical probes will allow the elucidation of the details of biological processes that occur within this cellular compartment.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Mitocôndrias/metabolismo , Animais , Anti-Infecciosos/administração & dosagem , Antineoplásicos/administração & dosagem , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Lipossomos/química , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...