Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 31: 1149-1160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34982683

RESUMO

Survival prediction for patients based on histopa- thological whole-slide images (WSIs) has attracted increasing attention in recent years. Due to the massive pixel data in a single WSI, fully exploiting cell-level structural information (e.g., stromal/tumor microenvironment) from the gigapixel WSI is challenging. Most of the current studies resolve the problem by sampling limited image patches to construct a graph-based model (e.g., hypergraph). However, the sampling scale is a critical bottleneck since it is a fundamental obstacle of broadening samples for transductive learning. To overcome the limitation of the sampling scale for constructing a big hypergraph model, we propose a factorization neural network that embeds the correlation among large-scale vertices and hyperedges into two low-dimensional latent semantic spaces separately, empowering the dense sampling. Thanks to the compressed low-dimensional correlation embedding, the hypergraph convolutional layers generate the high-order global representation for each WSI. To minimize the effect of the uncertainty data as well as to achieve the metric-driven learning, we also propose a multi-level ranking supervision to enable the network learning by a queue of patients on the global horizon. Extensive experiments are conducted on three public carcinoma datasets (i.e., LUSC, GBM, and NLST), and the quantitative results demonstrate the proposed method outperforms state-of-the-art methods across-the-board.


Assuntos
Redes Neurais de Computação , Humanos
2.
IEEE Trans Image Process ; 30: 5327-5338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043509

RESUMO

Effective 3D shape retrieval and recognition are challenging but important tasks in computer vision research field, which have attracted much attention in recent decades. Although recent progress has shown significant improvement of deep learning methods on 3D shape retrieval and recognition performance, it is still under investigated of how to jointly learn an optimal representation of 3D shapes considering their relationships. To tackle this issue, we propose a multi-scale representation learning method on hypergraph for 3D shape retrieval and recognition, called multi-scale hypergraph neural network (MHGNN). In this method, the correlation among 3D shapes is formulated in a hypergraph and a hypergraph convolution process is conducted to learn the representations. Here, multiple representations can be obtained through different convolution layers, leading to multi-scale representations of 3D shapes. A fusion module is then introduced to combine these representations for 3D shape retrieval and recognition. The main advantages of our method lie in 1) the high-order correlation among 3D shapes can be investigated in the framework and 2) the joint multi-scale representation can be more robust for comparison. Comparisons with state-of-the-art methods on the public ModelNet40 dataset demonstrate remarkable performance improvement of our proposed method on the 3D shape retrieval task. Meanwhile, experiments on recognition tasks also show better results of our proposed method, which indicate the superiority of our method on learning better representation for retrieval and recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...