Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 51(16): 7260-7280, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35899763

RESUMO

Single atom catalysts (SACs) offer unprecedented opportunities for high-efficiency reactions taking place in many important fields of catalytic processes, electrochemistry, and photoreactions. Due to their maximized atomic utilization and unique electronic and chemical properties, SACs can provide high activity and excellent selectivity for gas adsorption and electron transport, leveraging SACs that enhance the detection sensitivity and selectivity to target gases. In the past few years, SACs including both noble (Pt, Pd, Au, etc.) and non-noble (Mn, Ni, Zn etc.) metals have been demonstrated to be very useful in optimizing sensing performances. However, a comprehensive review on this topic is still missing. Herein, we summarize the synthesis technologies of SACs that are applicable to gas sensors. The electronic and chemical interactions between SACs and host sensing materials, which are crucial to sensor functions, are discussed. Then, we highlight the application progress of various SACs in gas sensors. Prospects in the creation of new sensing materials with emerging SACs and versatile supports are also present. Finally, the challenges and prospects of SACs in the future development of sensors are analyzed.

2.
J Hazard Mater ; 415: 125757, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088211

RESUMO

Metal oxide semiconductor (MOS) thin films hold great promise for electronic devices such as gas sensors. However, the low surface activity of pristine MOS often leads to inferior sensitivity and the sensitization mechanism of ultrathin MOS films has received rare attention. Herein, we report a high performance gas sensor based on plasma-etched ZnO thin films. The ultrathin ZnO films (20 nm) were deposited on SiO2 wafers by atomic layer deposition (ALD), which enables high-throughput production of sensor devices. The ZnO sensor shows typical n-type conductivity, which is highly variable to the exposure of triethylamine (TEA). Annealing temperature of the films is found to impact the sensor response, revealing calcination at a moderate temperature, i.e. 700 °C, leads to the best response. Further treatment by Ar plasma results in a remarkable decrease of sensor working temperature from 300 °C of untreated films to 250 °C and nearly 4-fold enhancement in the sensor response to 10 ppm TEA. Notably, the plasma-treated ZnO sensor also shows decent response even at room temperature (RT), which has been seldom reported for ZnO-based sensors. Structure and mechanism investigations reveal that the superior sensor properties are derived from the abundant oxygen vacancies generated by Ar plasma etching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...