Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 44(6): 2369-2378, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28317122

RESUMO

PURPOSE: To design and construct a three-dimensional (3D) anthropomorphic abdominal phantom for geometric accuracy and dose summation accuracy evaluations of deformable image registration (DIR) algorithms for adaptive radiation therapy (ART). METHOD: Organ molds, including liver, kidney, spleen, stomach, vertebra, and two metastasis tumors, were 3D printed using contours from an ovarian cancer patient. The organ molds were molded with deformable gels made of different mixtures of polyvinyl chloride (PVC) and the softener dioctyl terephthalate. Gels with different densities were obtained by a polynomial fitting curve that described the relation between the Hounsfield unit (HU) and PVC-softener blending ratio. The rigid vertebras were constructed by molding of white cement and cellulose pulp. The final abdominal phantom was assembled by arranging all the fabricated organs inside a hollow dummy according to their anatomies, and sealed by deformable gel with averaged HU of muscle and fat. Fiducial landmarks were embedded inside the phantom for spatial accuracy and dose accumulation accuracy studies. Two channels were excavated to facilitate ionization chamber insertion for dosimetric measurements. Phantom properties such as deformable gel elasticity and HU stability were studied. The dosimetric measurement accuracy in the phantom was performed, and the DIR accuracies of three DIR algorithms available in the open source DIR toolkit-DIRART were also validated. RESULTS: The constructed deformable gel showed elastic behavior and was stable in HU values over times, proving to be a practical material for the deformable phantom. The constructed abdominal phantom consisted of realistic anatomies in terms of both anatomical shapes and densities when compared with its reference patient. The dosimetric measurements showed a good agreement with the calculated doses from the treatment planning system. Fiducial-based accuracy analysis conducted on the constructed phantom demonstrated the feasibility of applying the phantom for organ-wise DIR accuracy assessment. CONCLUSIONS: We have designed and constructed an anthropomorphic abdominal deformable phantom with satisfactory elastic property, realistic organ density, and anatomy. This physical phantom can be used for routine validations of DIR geometric accuracy and dose accumulation accuracy in ART.


Assuntos
Algoritmos , Imagens de Fantasmas , Abdome/diagnóstico por imagem , Humanos , Radiometria , Baço
2.
J Appl Clin Med Phys ; 18(2): 206-213, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28300368

RESUMO

With the purpose of reducing stray radiation dose (SRD) in out-of-field region (OFR) during radiotherapy with 6 MV intensity-modulated radiation therapy (IMRT), a body-shielding device (BSD) was prepared according to the measurements obtained in experimental testing. In experimental testing, optimal shielding conditions, such as 1 mm lead, 2 mm lead, and 1 mm lead plus 10 mm bolus, were investigated along the medial axis of a phantom using thermoluminescent dosimeters (TLDs). The SRDs at distances from field edge were then measured and analyzed for a clinical IMRT treatment plan for nasopharyngeal carcinoma before and after shielding using the BSD. In addition, SRDs in anterior, posterior, left and right directions of phantom were investigated with and without shielding, respectively. Also, the SRD at the bottom of treatment couch was measured. SRD decreased exponentially to a constant value with increasing distance from field edge. The shielding rate was 50%-80%; however, there were no significant differences in SRDs when shielded by 1 mm lead, 2 mm lead, or 1 mm lead plus 10 mm bolus (P>0.05). Importantly, the 10 mm bolus absorbed back-scattering radiation due to the interaction between photons and lead. As a result, 1 mm lead plus 10 mm bolus was selected to prepare the BSD. After shielding with BSD, total SRDs in the OFR decreased to almost 50% of those without shielding when irradiated with IMRT beams. Due to the effects of treatment couch and gantry angle, SRDs at distances were not identical in anterior, posterior, left and right direction of phantom without BSD. As higher dose in anterior and lower dose in posterior, SRDs were substantial similarities after shielding. There was no significant difference in SRDs for left and right directions with or without shielding. Interestingly, SRDs in the four directions were similar after shielding. From these results, the BSD developed in this study may significantly reduce SRD in the OFR during radiotherapy, thus decreasing the risk of secondary cancers.


Assuntos
Carcinoma/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Imagens de Fantasmas , Proteção Radiológica/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Carcinoma Nasofaríngeo , Fótons , Dosagem Radioterapêutica , Espalhamento de Radiação , Dosimetria Termoluminescente
3.
J Appl Clin Med Phys ; 17(4): 15-24, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27455481

RESUMO

The aim of the present study was to investigate the role of CTVision in interfractional setup errors during intensity-modulated radiation therapy (IMRT) in 12 nasopharyngeal carcinoma (NPC) patients. The trend of setup errors as a function of time during a fractionated radiotherapy course was investigated, and the influence of reconstructive thickness on image reconstruction for setup errors was analyzed. The appropriate planning target volume (PTV) margin and planning risk volume (PRV) margin were defined to provide a reference for the design of IMRT for NPC. Based on CTVision, online CT was performed weekly for each patient. Setup errors were measured by registration between the CT reconstructed image and reference image. Mean of setup errors, estimated population systematic (Σ), and population random (σ) errors were calculated using SPSS (v15.0). Optimum PTV and PRV margins were calculated. In the clinical data, for the LR (left-right), SI (superior-inferior), and AP (anterior-posterior) directions, Σ was 0.8, 0.8, and 1.0 mm, respectively, and σ was 1.0, 1.3, and 0.8 mm, respectively. In the LR, SI, and AP directions, PTV margins were at least 2.7, 2.9, and 3.0 mm, respectively, and PRV margins were at least 1.5, 1.7, and 1.7 mm, respectively. No significant differences in setup errors were observed during the fractionated radiotherapy course (p > 0.05). However, CT image reconstruction with different thicknesses affected the accuracy of measurements for setup errors, particularly in the SI direction. The application of CTVision to correct setup errors is important and can provide reasonable margins to guarantee the coverage of PTVs and spare organs at risk. A thickness of 3 mm in the reconstructed image is appropriate for the measurement of setup errors by image registration.


Assuntos
Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Metástase Linfática , Pessoa de Meia-Idade , Neoplasias Nasofaríngeas/secundário , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...