Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 1361-1386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332150

RESUMO

Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Sirtuínas/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo
2.
Cell Death Dis ; 15(1): 34, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212325

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Mutação/genética , Transdução de Sinais , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Microambiente Tumoral
4.
Pharmacol Res ; 194: 106830, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343647

RESUMO

Drug combination therapy is a highly effective approach for enhancing the therapeutic efficacy of anti-cancer drugs and overcoming drug resistance. However, the innumerable possible drug combinations make it impractical to screen all synergistic drug pairs. Moreover, biological insights into synergistic drug pairs are still lacking. To address this challenge, we systematically analyzed drug combination datasets curated from multiple databases to identify drug pairs more likely to show synergy. We classified drug pairs based on their MoA and discovered that 110 MoA pairs were significantly enriched in synergy in at least one type of cancer. To improve the accuracy of predicting synergistic effects of drug pairs, we developed a suite of machine learning models that achieve better predictive performance. Unlike most previous methods that were rarely validated by wet-lab experiments, our models were validated using two-dimensional cell lines and three-dimensional tumor slice culture (3D-TSC) models, implying their practical utility. Our prediction and validation results indicated that the combination of the RTK inhibitors Lapatinib and Pazopanib exhibited a strong therapeutic effect in breast cancer by blocking the downstream PI3K/AKT/mTOR signaling pathway. Furthermore, we incorporated molecular features to identify potential biomarkers for synergistic drug pairs, and almost all potential biomarkers found connections between drug targets and corresponding molecular features using protein-protein interaction network. Overall, this study provides valuable insights to complement and guide rational efforts to develop drug combination treatments.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Fosfatidilinositol 3-Quinases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos
5.
Nat Commun ; 14(1): 2518, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130873

RESUMO

Clinical updates suggest conserving metastatic sentinel lymph nodes (SLNs) of breast cancer (BC) patients during surgery; however, the immunoadjuvant potential of this strategy is unknown. Here we leverage an immune-fueling flex-patch to animate metastatic SLNs with personalized antitumor immunity. The flex-patch is implanted on the postoperative wound and spatiotemporally releases immunotherapeutic anti-PD-1 antibodies (aPD-1) and adjuvants (magnesium iron-layered double hydroxide, LDH) into the SLN. Genes associated with citric acid cycle and oxidative phosphorylation are enriched in activated CD8+ T cells (CTLs) from metastatic SLNs. Delivered aPD-1 and LDH confer CTLs with upregulated glycolytic activity, promoting CTL activation and cytotoxic killing via metal cation-mediated shaping. Ultimately, CTLs in patch-driven metastatic SLNs could long-termly maintain tumor antigen-specific memory, protecting against high-incidence BC recurrence in female mice. This study indicates a clinical value of metastatic SLN in immunoadjuvant therapy.


Assuntos
Linfonodo Sentinela , Feminino , Camundongos , Animais , Linfonodo Sentinela/patologia , Biópsia de Linfonodo Sentinela , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Recidiva Local de Neoplasia/patologia , Adjuvantes Imunológicos/uso terapêutico , Linfonodos/patologia
6.
Cancer Res ; 83(15): 2614-2633, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227919

RESUMO

Cancer metastasis is an extremely complex process affected by many factors. An acidic microenvironment can drive cancer cell migration toward blood vessels while also hampering immune cell activity. Here, we identified a mechanism mediated by sialyltransferases that induces an acidic tumor-permissive microenvironment (ATPME) in BRCA1-mutant and most BRCA1-low breast cancers. Hypersialylation mediated by ST8SIA4 perturbed the mammary epithelial bilayer structure and generated an ATPME and immunosuppressive microenvironment with increased PD-L1 and PD1 expressions. Mechanistically, BRCA1 deficiency increased expression of VEGFA and IL6 to activate TGFß-ST8SIA4 signaling. High levels of ST8SIA4 led to accumulation of polysialic acid (PSA) on mammary epithelial membranes that facilitated escape of cancer cells from immunosurveillance, promoting metastasis and resistance to αPD1 treatment. The sialyltransferase inhibitor 3Fax-Peracetyl Neu5Ac neutralized the ATPME, sensitized cancers to immune checkpoint blockade by activating CD8 T cells, and inhibited tumor growth and metastasis. Together, these findings identify a potential therapeutic option for cancers with a high level of PSA. SIGNIFICANCE: BRCA1 deficiency generates an acidic microenvironment to promote cancer metastasis and immunotherapy resistance that can be reversed using a sialyltransferase inhibitor.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Humanos , Feminino , Imunoterapia , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Sialiltransferases/genética , Linhagem Celular Tumoral , Proteína BRCA1/genética
7.
Adv Mater ; 35(35): e2302705, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37216626

RESUMO

Noninvasive fluorescence (FL) imaging and high-performance photocatalytic therapy (PCT) are opposing optical properties that are difficult to combine in a single material system. Herein, a facile approach to introducing oxygen-related defects in carbon dots (CDs) via post-oxidation with 2-iodoxybenzoic acid is reported, in which some nitrogen atoms are substituted by oxygen atoms. Unpaired electrons in these oxygen-related defects rearrange the electronic structure of the oxidized CDs (ox-CDs), resulting in an emerging near-infrared (NIR) absorption band. These defects not only contribute to enhanced NIR bandgap emission but also act as trappers for photoexcited electrons to promote efficient charge separation on the surface, leading to abundant photo-generated holes on the ox-CDs surface under visible-light irradiation. Under white LED torch irradiation, the photo-generated holes oxidize hydroxide to hydroxyl radicals in the acidification of the aqueous solution. In contrast, no hydroxyl radicals are detected in the ox-CDs aqueous solution under 730 nm laser irradiation, indicating noninvasive NIR FL imaging potential. Utilizing the Janus optical properties of the ox-CDs, the in vivo NIR FL imaging of sentinel lymph nodes around tumors and efficient photothermal enhanced tumor PCT are demonstrated.


Assuntos
Neoplasias , Oxigênio , Humanos , Oxigênio/química , Carbono/química , Fototerapia , Luz , Neoplasias/terapia , Água , Corantes
8.
Int J Biol Sci ; 19(6): 1764-1777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063417

RESUMO

Sleeping Beauty (SB) insertional mutagenesis has been widely used for genome-wide functional screening in mouse models of human cancers, however, intertumor heterogeneity can be a major obstacle in identifying common insertion sites (CISs). Although previous algorithms have been successful in defining some CISs, they also miss CISs in certain situations. A major common characteristic of these previous methods is that they do not take tumor heterogeneity into account. However, intertumoral heterogeneity directly influences the sequence read number for different tumor samples and then affects CIS identification. To precisely detect and define cancer driver genes, we developed SB Digestor, a computational algorithm that overcomes biological heterogeneity to identify more potential driver genes. Specifically, we define the relationship between the sequenced read number and putative gene number to deduce the depth cutoff for each tumor, which can reduce tumor complexity and precisely reflect intertumoral heterogeneity. Using this new tool, we re-analyzed our previously published SB-based screening dataset and identified many additional potent drivers involved in Brca1-related tumorigenesis, including Arhgap42, Tcf12, and Fgfr2. SB Digestor not only greatly enhances our ability to identify and prioritize cancer drivers from SB tumors but also substantially deepens our understanding of the intrinsic genetic basis of cancer.


Assuntos
Elementos de DNA Transponíveis , Neoplasias , Animais , Camundongos , Humanos , Elementos de DNA Transponíveis/genética , Neoplasias/genética , Neoplasias/patologia , Mutagênese Insercional/genética , Oncogenes , Modelos Animais de Doenças , Transposases/genética
9.
J Colloid Interface Sci ; 644: 107-115, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105034

RESUMO

Biocompatible metal-free carbon dots (CDs) with good photo-induced strong oxidation capacity in aqueous solutions are scarce for high-performance photocatalytic antibacterial and tumor therapy. In this work, we achieved effective visible light-induced cell death and antibacterial performance based on biocompatible metal-free CDs. The visible-light-induced reducing ability of the surface electron-withdrawing structure of the CDs allowed for the remaining photo-induced holes with high oxidation capacity to oxidize water molecules and generate hydroxyl radicals. Antibiotic-resistant bacteria were effectively inhibited by the CDs under xenon lamp irradiation with 450 nm long pass filter. Moreover, CD-based tumor photocatalytic therapy in mice was achieved using a xenon lamp with 450 nm long pass filter (0.3 W cm-2).


Assuntos
Carbono , Neoplasias , Animais , Camundongos , Carbono/química , Luz , Antibacterianos/farmacologia , Antibacterianos/química , Oxirredução , Metais , Água
10.
Sci Adv ; 9(3): eabq1395, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662868

RESUMO

Breast cancer-associated gene 1 (Brca1) deficiency induces the onset of breast cancer formation, accompanied with extensive genetic alterations. Here, we used both the sleeping beauty transposon mutagenesis system and CRISPR-Cas9-mediated genome-wide screening in mice to identify potential genetic alterations that act synergistically with Brca1 deficiency to promote tumorignesis. Both approaches identified Cullin-5 as a tumor suppressor, whose mutation enabled Brca1-deficient cell survival and accelerated tumorigenesis by orchestrating tumor microenvironment. Cullin-5 suppresses cell growth through ubiquitylating and degrading adenosine 3',5'-monophosphate-responsive element binding protein 1 (CREB1), especially under protein damage condition. Meanwhile, Cullin-5 deficiency activated CREB1-CCL2 signaling and resulted in the accumulation of monocytes and polymorphonuclear myeloid-derived suppressor cells, reduction of T cells that benefit tumor progression in both Brca1-deficient cells and wild-type cells. Blocking CREB1 activity either through gene knockout or specific inhibitor treatment suppressed changes in the tumor microenvironment caused by Cullin-5 deficiency and blocked tumor progression.


Assuntos
Proteínas Culina , Neoplasias Mamárias Animais , Animais , Camundongos , Proteínas Culina/genética , Genes Supressores de Tumor , Neoplasias Mamárias Animais/patologia , Transdução de Sinais , Microambiente Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
11.
Adv Sci (Weinh) ; 9(36): e2205106, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307905

RESUMO

Rapid, efficient, and precise cancer therapy is highly desired. Here, this work reports solvothermally synthesized photoactivatable Pt(IV)-coordinated carbon dots (Pt-CDs) and their bovine serum albumin (BSA) complex (Pt-CDs@BSA) as a novel orange light-triggered anti-tumor therapeutic agent. The homogeneously distributed Pt(IV) in the Pt-CDs (Pt: 17.2 wt%) and their carbon cores with significant visible absorption exhibit excellent photocatalytic properties, which not only efficiently releases cytotoxic Pt(II) species but also promotes hydroxy radical generation from water under orange light. When triggered with a 589 nm laser, Pt-CDs@BSA possesses the ultrastrong cancer cell killing capacities of intracellular Pt(II) species release, hydroxyl radical generation, and acidification, which induce powerful immunogenic cell death. Activation of Pt-CDs@BSA by a single treatment with a 589 nm laser effectively eliminated the primary tumor and inhibited distant tumor growth and lung metastasis. This study thus presents a new concept for building photoactivatable Pt(IV)-enriched nanodrug-based CDs for precision cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Carbono , Luz , Neoplasias/tratamento farmacológico , Água
12.
Adv Sci (Weinh) ; 9(23): e2202283, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652197

RESUMO

Carbon dots (CDs) have attracted significant interest as one of the most emerging photoluminescence (PL) nanomaterials. However, the realization of CDs with dominant near-infrared (NIR) absorption/emission peaks in aqueous solution remains a great challenge. Herein, CDs with both main NIR absorption bands at 720 nm and NIR emission bands at 745 nm in an aqueous solution are fabricated for the first time by fusing large conjugated perylene derivatives under solvothermal treatment. With post-surface engineering, the polyethyleneimine modified CDs (PEI-CDs) exhibit enhanced PL quantum yields (PLQY) up to 8.3% and 18.8% in bovine serum albumin aqueous and DMF solutions, which is the highest PLQY of CDs in NIR region under NIR excitation. Density functional theory calculations support the strategy of fusing large conjugated perylene derivatives to achieve NIR emissions from CDs. Compared to the commercial NIR dye Indocyanine green, PEI-CDs exhibit excellent photostability and much lower cost. Furthermore, the obtained PEI-CDs illustrate the advantages of remarkable two-photon NIR angiography and in vivo NIR fluorescence bioimaging. This work demonstrates a promising strategy of fusing large conjugated molecules for preparing CDs with strong NIR absorption/emission to promote their bioimaging applications.


Assuntos
Perileno , Pontos Quânticos , Carbono , Fluorescência , Água
13.
Front Immunol ; 13: 861221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547739

RESUMO

Epigenetic reprogramming is an independent mode of gene expression that often involves changes in the transcription and chromatin structure due to tumor initiation and development. In this study, we developed a specifically modified peptide array and searched for a recognized epigenetic reader. Our results demonstrated that BRD4 is not only an acetylation reader but of propionylation as well. We also studied the quantitative binding affinities between modified peptides and epigenetic regulators by isothermal titration calorimetry (ITC). Furthermore, we introduced the Fgfr2-S252W transgenic mouse model to confirm that this acetylation is associated with the activation of c-Myc and drives tumor formation. Targeted disruption of BRD4 in Fgfr2-S252W mouse tumor cells also confirmed that BRD4 is a key regulator of histone 3 acetylation. Finally, we developed a tumor slice culture system and demonstrated the synergy between immune checkpoint blockade and targeted therapy in triple-negative breast cancer (TNBC). These data extend our understanding of epigenetic reprogramming and epigenetics-based therapies.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Redes Reguladoras de Genes , Histonas/metabolismo , Humanos , Camundongos , Proteínas Nucleares/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
14.
Light Sci Appl ; 11(1): 113, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477575

RESUMO

Efficient red emissive carbon dots (CDs) in aqueous solutions are very scarce for high performance bioimaging applications. In this work, we report a one-step solvothermal treatment to synthesize pure red emissive CDs (FA-CDs) from citric acid and urea in formic acid without complicated purification procedures. Photoluminescence quantum yield (PLQY) of 43.4% was observed in their dimethyl sulfoxide solutions. High PLQY up to 21.9% in aqueous solutions was achieved in their bovine serum albumin (BSA) composites (FA-CDs@BSA) with significantly enhanced multi-photon fluorescence. The strong surface electron-withdrawing structure of FA-CDs caused by the high content of C = O groups contributes for their pure red emission. Owing to the significantly enhanced single and multi-photon red fluorescence and enlarged particle sizes after composing with BSA, in vivo tumor imaging and two-photon fluorescence imaging of blood vessels in mouse ear have been realized via intravenous injection of FA-CDs@BSA aqueous solutions.

15.
Nat Commun ; 13(1): 1481, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304461

RESUMO

Immune checkpoint blockade (ICB) is a powerful approach for cancer therapy although good responses are only observed in a fraction of cancer patients. Breast cancers caused by deficiency of breast cancer-associated gene 1 (BRCA1) do not have an improved response to the treatment. To investigate this, here we analyze BRCA1 mutant mammary tissues and tumors derived from both BRCA1 mutant mouse models and human xenograft models to identify intrinsic determinants governing tumor progression and ICB responses. We show that BRCA1 deficiency activates S100A9-CXCL12 signaling for cancer progression and triggers the expansion and accumulation of myeloid-derived suppressor cells (MDSCs), creating a tumor-permissive microenvironment and rendering cancers insensitive to ICB. These oncogenic actions can be effectively suppressed by the combinatory treatment of inhibitors for S100A9-CXCL12 signaling with αPD-1 antibody. This study provides a selective strategy for effective immunotherapy in patients with elevated S100A9 and/or CXCL12 protein levels.


Assuntos
Neoplasias da Mama , Células Supressoras Mieloides , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Calgranulina B/genética , Calgranulina B/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Imunoterapia , Camundongos , Oncogenes , Microambiente Tumoral/genética
16.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025764

RESUMO

Cancer metastasis is the cause of the majority of cancer-related deaths. In this study, we demonstrated that no expression or low expression of ATP11B in conjunction with high expression of PTDSS2, which was negatively regulated by BRCA1, markedly accelerates tumor metastasis. Further analysis revealed that cells with low ATP11B expression and high PTDSS2 expression (ATP11BloPTDSS2hi cells) were associated with poor prognosis and enhanced metastasis in breast cancer patients in general. Mechanistically, an ATP11BloPTDSS2hi phenotype was associated with increased levels of nonapoptotic phosphatidylserine (PS) on the outer leaflet of the cell membrane. This PS increase serves as a global immunosuppressive signal to promote breast cancer metastasis through an enriched tumor microenvironment with the accumulation of myeloid-derived suppressor cells and reduced activity of cytotoxic T cells. The metastatic processes associated with ATP11BloPTDSS2hi cancer cells can be effectively overcome by changing the expression phenotype to ATP11BhiPTDSS2lo through a combination of anti-PS antibody with either paclitaxel or docetaxel. Thus, blocking the ATP11BloPTDSS2hi axis provides a new selective therapeutic strategy to prevent metastasis in breast cancer patients.


Assuntos
Neoplasias da Mama , Células Supressoras Mieloides , Segunda Neoplasia Primária , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Melanoma , Camundongos , Células Supressoras Mieloides/patologia , Metástase Neoplásica/patologia , Segunda Neoplasia Primária/patologia , Paclitaxel , Fosfatidilserinas , Neoplasias Cutâneas , Microambiente Tumoral , Melanoma Maligno Cutâneo
17.
Int J Biol Sci ; 17(15): 4176-4191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803491

RESUMO

Cholangiocarcinoma (CC), the most lethal type of liver cancer, remains very difficult to treat due to an incomplete understanding of the cancer initiation and progression mechanisms and no effective therapeutic drugs. Thus, identification of genomic drivers and delineation of the underlying mechanisms are urgently needed. Here, we conducted a genome-wide CRISPR-Cas9 screening in liver-specific Smad4/Pten knockout mice (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), and identified 15 putative tumor suppressor genes, including Cullin3 (Cul3), whose deficiency increases protein levels of Nrf2 and Cyclin D1 that accelerate cholangiocytes expansion leading to the initiation of CC. Meanwhile, Cul3 deficiency also increases the secretion of Cxcl9 in stromal cells to attract T cells infiltration, and increases the production of Amphiregulin (Areg) mediated by Nrf2, which paracrinely induces inflammation in the liver, and promotes accumulation of exhausted PD1high CD8 T cells at the expenses of their cytotoxic activity, allowing CC progression. We demonstrate that the anti-PD1/PD-L1 blockade inhibits CC growth, and the effect is enhanced by combining with sorafenib selected from organoid mediated drug sensitive test. This model makes it possible to further identify more liver cancer suppressors, study molecular mechanisms, and develop effective therapeutic strategies.


Assuntos
Anticorpos/uso terapêutico , Colangiocarcinoma/patologia , Proteínas Culina/metabolismo , Neoplasias Hepáticas/patologia , Sorafenibe/uso terapêutico , Microambiente Tumoral , Animais , Anticorpos/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos , Sistemas CRISPR-Cas , Proteínas Culina/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Fígado/metabolismo , Camundongos , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Sorafenibe/administração & dosagem
18.
Adv Sci (Weinh) ; 8(22): e2101176, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605222

RESUMO

Most breast cancers at an advanced stage exhibit an aggressive nature, and there is a lack of effective anticancer options. Herein, the development of patient-derived organoids (PDOs) is described as a real-time platform to explore the feasibility of tailored treatment for refractory breast cancers. PDOs are successfully generated from breast cancer tissues, including heavily treated specimens. The microtubule-targeting drug-sensitive response signatures of PDOs predict improved distant relapse-free survival for invasive breast cancers treated with adjuvant chemotherapy. It is further demonstrated that PDO pharmaco-phenotyping reflects the previous treatment responses of the corresponding patients. Finally, as clinical case studies, all patients who receive at least one drug predicate to be sensitive by PDOs achieve good responses. Altogether, the PDO model is developed as an effective platform for evaluating patient-specific drug sensitivity in vitro, which can guide personal treatment decisions for breast cancer patients at terminal stage.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quimioterapia Adjuvante/métodos , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos , Feminino , Humanos
19.
Adv Sci (Weinh) ; 8(21): e2100974, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34514747

RESUMO

Fibroblast growth factor receptor 2 (FGFR2) is a membrane-spanning tyrosine kinase that mediates FGF signaling. Various FGFR2 alterations are detected in breast cancer, yet it remains unclear if activation of FGFR2 signaling initiates tumor formation. In an attempt to answer this question, a mouse model berrying an activation mutation of FGFR2 (FGFR2-S252W) in the mammary gland is generated. It is found that FGF/FGFR2 signaling drives the development of triple-negative breast cancer accompanied by epithelial-mesenchymal transition that is regulated by FGFR2-STAT3 signaling. It is demonstrated that FGFR2 suppresses BRCA1 via the ERK-YY1 axis and promotes tumor progression. BRCA1 knockout in the mammary gland of the FGFR2-S252W mice significantly accelerated tumorigenesis. It is also shown that FGFR2 positively regulates PD-L1 and that a combination of FGFR2 inhibition and immune checkpoint blockade kills cancer cells. These data suggest that the mouse models mimic human breast cancers and can be used to identify actionable therapeutic targets.


Assuntos
Proteína BRCA1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antígeno B7-H1/metabolismo , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Imunoterapia , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Fator de Transcrição YY1/metabolismo
20.
Sci Rep ; 11(1): 12219, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108601

RESUMO

Antimicrobial peptides (AMPs) have emerged as a promising alternative to small molecule antibiotics. Although AMPs have previously been isolated in many organisms, efforts on the systematic identification of AMPs in fish have been lagging. Here, we collected peptides from the plasma of medaka (Oryzias latipes) fish. By using mass spectrometry, 6399 unique sequences were identified from the isolated peptides, among which 430 peptides were bioinformatically predicted to be potential AMPs. One of them, a thermostable 13-residue peptide named BING, shows a broad-spectrum toxicity against pathogenic bacteria including drug-resistant strains, at concentrations that presented relatively low toxicity to mammalian cell lines and medaka. Proteomic analysis indicated that BING treatment induced a deregulation of periplasmic peptidyl-prolyl isomerases in gram-negative bacteria. We observed that BING reduced the RNA level of cpxR, an upstream regulator of envelope stress responses. cpxR is known to play a crucial role in the development of antimicrobial resistance, including the regulation of genes involved in drug efflux. BING downregulated the expression of efflux pump components mexB, mexY and oprM in P. aeruginosa and significantly synergised the toxicity of antibiotics towards these bacteria. In addition, exposure to sublethal doses of BING delayed the development of antibiotic resistance. To our knowledge, BING is the first AMP shown to suppress cpxR expression in Gram-negative bacteria. This discovery highlights the cpxR pathway as a potential antimicrobial target.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Estresse Fisiológico , Animais , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Oryzias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...