Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 31(21): 4356-65, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21896779

RESUMO

Exquisite control of the level and activity of p53 are required in order to preserve cellular homeostasis following DNA damage. How this regulation is integrated with other key metabolic pathways in vivo is poorly understood. Here, we describe an endogenous feedback circuit for regulation of p53 through its transcriptional target gene, Redd1, a stress-induced inhibitor of TOR complex 1 (TORC1) activity. Cells and tissues of Redd1(-/-) mice exhibit enhanced sensitivity to ionizing radiation and chemotherapy treatment, which we demonstrate is attributable to abnormally increased p53 protein level and activity in the absence of Redd1. We find that deregulation of p53 in this setting is not due to failed DNA repair or to increased p53 stabilization but, instead, to increased p53 translation. We show that Redd1 loss leads to elevated mammalian TORC1 (mTORC1) activity, which explains the increased p53 translation and protein levels. Together, these findings suggest that REDD1-mediated suppression of mTORC1 activity exerts feedback control on p53, thereby limiting the apoptotic response and contributing to cellular survival following DNA damage. This work therefore defines a role for REDD1 in the control of p53 in vivo, with potential therapeutic implications for cancer and for the variety of genetic diseases involving TOR pathway signaling components.


Assuntos
Dano ao DNA/fisiologia , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Dano ao DNA/genética , Retroalimentação Fisiológica , Genes p53 , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Modelos Biológicos , Complexos Multiproteicos , Biossíntese de Proteínas , Transdução de Sinais , Serina-Treonina Quinases TOR , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
2.
Mol Cell Biol ; 25(14): 5834-45, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15988001

RESUMO

The tuberous sclerosis tumor suppressors TSC1 and TSC2 regulate the mTOR pathway to control translation and cell growth in response to nutrient and growth factor stimuli. We have recently identified the stress response REDD1 gene as a mediator of tuberous sclerosis complex (TSC)-dependent mTOR regulation by hypoxia. Here, we demonstrate that REDD1 inhibits mTOR function to control cell growth in response to energy stress. Endogenous REDD1 is induced following energy stress, and REDD1-/- cells are highly defective in dephosphorylation of the key mTOR substrates S6K and 4E-BP1 following either ATP depletion or direct activation of the AMP-activated protein kinase (AMPK). REDD1 likely acts on the TSC1/2 complex, as regulation of mTOR substrate phosphorylation by REDD1 requires TSC2 and is blocked by overexpression of the TSC1/2 downstream target Rheb but is not blocked by inhibition of AMPK. Tetracycline-inducible expression of REDD1 triggers rapid dephosphorylation of S6K and 4E-BP1 and significantly decreases cellular size. Conversely, inhibition of endogenous REDD1 by short interfering RNA increases cell size in a rapamycin-sensitive manner, and REDD1-/- cells are defective in cell growth regulation following ATP depletion. These results define REDD1 as a critical transducer of the cellular response to energy depletion through the TSC-mTOR pathway.


Assuntos
Metabolismo Energético/fisiologia , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Tamanho Celular , Metabolismo Energético/genética , Ativação Enzimática , Humanos , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosforilação , Proteínas Quinases/fisiologia , Interferência de RNA , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética , Proteína 2 do Complexo Esclerose Tuberosa
3.
Genes Dev ; 18(23): 2893-904, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15545625

RESUMO

Mammalian target of rapamycin (mTOR) is a central regulator of protein synthesis whose activity is modulated by a variety of signals. Energy depletion and hypoxia result in mTOR inhibition. While energy depletion inhibits mTOR through a process involving the activation of AMP-activated protein kinase (AMPK) by LKB1 and subsequent phosphorylation of TSC2, the mechanism of mTOR inhibition by hypoxia is not known. Here we show that mTOR inhibition by hypoxia requires the TSC1/TSC2 tumor suppressor complex and the hypoxia-inducible gene REDD1/RTP801. Disruption of the TSC1/TSC2 complex through loss of TSC1 or TSC2 blocks the effects of hypoxia on mTOR, as measured by changes in the mTOR targets S6K and 4E-BP1, and results in abnormal accumulation of Hypoxia-inducible factor (HIF). In contrast to energy depletion, mTOR inhibition by hypoxia does not require AMPK or LKB1. Down-regulation of mTOR activity by hypoxia requires de novo mRNA synthesis and correlates with increased expression of the hypoxia-inducible REDD1 gene. Disruption of REDD1 abrogates the hypoxia-induced inhibition of mTOR, and REDD1 overexpression is sufficient to down-regulate S6K phosphorylation in a TSC1/TSC2-dependent manner. Inhibition of mTOR function by hypoxia is likely to be important for tumor suppression as TSC2-deficient cells maintain abnormally high levels of cell proliferation under hypoxia.


Assuntos
Hipóxia/fisiopatologia , Proteínas Quinases/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Células 3T3 , Animais , Divisão Celular/fisiologia , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , RNA Interferente Pequeno , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
4.
Proc Natl Acad Sci U S A ; 100(5): 2432-7, 2003 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-12591950

RESUMO

The c-Jun NH(2)-terminal kinase (JNK) is activated when cells are exposed to environmental stress, including UV radiation. Gene disruption studies demonstrate that JNK is essential for UV-stimulated apoptosis mediated by the mitochondrial pathway by a Bax/Bak-dependent mechanism. Here, we demonstrate that JNK phosphorylates two members of the BH3-only subgroup of Bcl2-related proteins (Bim and Bmf) that are normally sequestered by binding to dynein and myosin V motor complexes. Phosphorylation by JNK causes release from the motor complexes. These proapoptotic BH3-only proteins therefore provide a molecular link between the JNK signal transduction pathway and the Bax/Bak-dependent mitochondrial apoptotic machinery.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Proteínas de Transporte/metabolismo , Proteínas de Membrana , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Reguladoras de Apoptose , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular , Análise Mutacional de DNA , DNA Complementar/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Neurônios/citologia , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas , Transdução de Sinais , Treonina/química , Proteína X Associada a bcl-2
5.
Mol Cell Biol ; 22(13): 4929-42, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12052897

RESUMO

Targeted gene disruption studies have established that the c-Jun NH(2)-terminal kinase (JNK) signaling pathway is required for stress-induced release of mitochondrial cytochrome c and apoptosis. Here we demonstrate that activated JNK is sufficient to induce rapid cytochrome c release and apoptosis. However, activated JNK fails to cause death in cells deficient of members of the Bax subfamily of proapoptotic Bcl2-related proteins. Furthermore, exposure to stress fails to activate Bax, cause cytochrome c release, and induce death in JNK-deficient cells. These data demonstrate that proapoptotic members of the Bax protein subfamily are essential for JNK-dependent apoptosis.


Assuntos
Apoptose/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Animais , Caspase 3 , Caspases/metabolismo , Células Cultivadas , Cricetinae , Grupo dos Citocromos c/metabolismo , Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase 7 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/efeitos da radiação , Camundongos , Mitocôndrias/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Raios Ultravioleta , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...