Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(49): 6292-6295, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38809528

RESUMO

Herein we studied visible-light-driven CO2 reduction using a series of tetra-phenylporphyrin iron catalysts and inexpensive anthraquinone dyes. Varying the functional groups on the phenyl moieties of the catalysts significantly enhances the photocatalytic activity, achieving an optimal turnover number (TON) of 10 476 and a selectivity of 100% in the noble-metal-free systems. The highest activity found in a bromo-substituted catalyst is attributed to favorable electron transfer from the photosensitizer to the iron porphyrin.

2.
Nat Commun ; 14(1): 1087, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841825

RESUMO

The direct utilization of solar energy to convert CO2 into renewable chemicals remains a challenge. One essential difficulty is the development of efficient and inexpensive light-absorbers. Here we show a series of aminoanthraquinone organic dyes to promote the efficiency for visible light-driven CO2 reduction to CO when coupled with an Fe porphyrin catalyst. Importantly, high turnover numbers can be obtained for both the photosensitizer and the catalyst, which has not been achieved in current light-driven systems. Structure-function study performed with substituents having distinct electronic effects reveals that the built-in donor-acceptor property of the photosensitizer significantly promotes the photocatalytic activity. We anticipate this study gives insight into the continued development of advanced photocatalysts for solar energy conversion.

3.
J Am Chem Soc ; 144(43): 19680-19684, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260355

RESUMO

The direct utilization of the full solar spectrum to obtain renewable fuels remains a challenge because the conversion of the low-energy light (red and near-infrared) is difficult. Current light-driven systems show activity for hydrogen generation with the high-energy part of sunlight. Here we report the use of a simple anthraquinone organic dye in an artificial photosynthetic system that promotes efficient red-light-driven production of hydrogen. The system contains no noble metal and exhibits a turnover number greater than 0.78 million and a quantum yield of 30.6% at 630 nm. A mechanistic study revealed that the excited-state and redox properties of the chromophore are critical to achieving high activity and stability.


Assuntos
Hidrogênio , Luz , Fotossíntese , Luz Solar , Corantes , Antraquinonas
4.
Inorg Chem ; 61(32): 12545-12551, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35926191

RESUMO

Organic dyes have been investigated extensively as promising photosensitizers in noble-metal-free photocatalytic systems for hydrogen production. However, other than functional group optimization, there are very few methods reported to be effective in improving their photocatalytic activity. Herein, we report the incorporation of Cu2+ into purpurin and gallein dyes for visible-light-driven hydrogen production. These Cu-dye chromophores significantly promote the photocatalytic activity of homogeneous systems when paired with a series of molecular Ni or Fe catalysts. Under optimal conditions, the Cu-purpurin and Cu-gallein photosensitizers exhibit more than 20-fold increases in turnover frequencies for hydrogen evolution when compared with purpurin and gallein. Catalytic systems with the Cu-purpurin chromophore show no decrease in activity over 120 h. Based on electrochemical and fluorescence quenching experiments, the enhancement of photocatalytic activity is likely due to the fact that Cu2+ can facilitate the transfer of electrons from the photosensitizers to the catalysts through creating highly reducing centers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...