Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 19(1): 327-337, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431087

RESUMO

Early brain injury (EBI)­induced neuronal apoptosis is primarily responsible for the subsequent complications of aneurysmal subarachnoid hemorrhage (aSAH), which may increase the risk of mortality in patients with aSAH. c­Jun N­terminal kinase (JNK) has been demonstrated to be a promoter of EBI­induced cell apoptosis, although the mechanism has yet to be fully elucidated. The present study aimed to explore whether the role of JNK1 is associated with tumor protein p53 (p53), which is one of the most important factor that triggers cell apoptosis. JNK1 expression was downregulated via in vivo small interfering RNA transfection in an aSAH rat model in order to assess differences in the behavior, survival times, morphology and genetics of the experimental animals. The results revealed that JNK1 inhibition improved the neurological scores and survival times of SAH rats by interrupting cascaded neuronal apoptosis. The interruption of EBI­induced neuronal apoptosis may originate from a decrease in the level of p53 phosphorylation and deactivation of the downstream mitochondrial apoptotic pathway. Taken together, these results suggest that JNK1 may be a promising target for improving the prognosis of patients with aSAH.


Assuntos
Apoptose , Lesões Encefálicas/patologia , Mitocôndrias/patologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neurônios/patologia , Hemorragia Subaracnóidea/patologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Lesões Encefálicas/metabolismo , Células Cultivadas , Masculino , Mitocôndrias/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Neurônios/metabolismo , Fosforilação , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/metabolismo , Proteína Supressora de Tumor p53/genética
2.
CNS Neurosci Ther ; 19(12): 926-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24165291

RESUMO

AIMS: To study the role of curcumin on glioma cells via the SHH/GLI1 pathway in vitro and vivo. METHODS: The effects of curcumin on proliferation, migration, apoptosis, SHH/GLI1 signaling, and GLI1 target genes expression were evaluated in multiple glioma cell lines in vitro. A U87-implanted nude mice model was used to study the role of curcumin on tumor volume and the suppression efficacy of GLI1. RESULTS: Curcumin showed cytotoxic effects on glioma cell lines in vitro. Both mRNA and protein levels of SHH/GLI1 signaling (Shh, Smo, GLI1) were downregulated in a dose- and time-dependent manner. Several GLI1-dependent target genes (CyclinD1, Bcl-2, Foxm1) were also downregulated. Curcumin treatment prevented GLI1 translocating into the cell nucleus and reduced the concentration of its reporter. Curcumin suppressed cell proliferation, colony formation, migration, and induced apoptosis which was mediated partly through the mitochondrial pathway after an increase in the ratio of Bax to Bcl2. Intraperitoneal injection of curcumin in vivo reduced tumor volume, GLI1 expression, the number of positively stained cells, and prolonged the survival period compared with the control group. CONCLUSION: This study shows that curcumin holds a great promise for SHH/GLI1 targeted therapy against gliomas.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Curcumina/uso terapêutico , Glioma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias Encefálicas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Estimativa de Kaplan-Meier , Camundongos , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína GLI1 em Dedos de Zinco
3.
Oncol Rep ; 30(6): 2852-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100685

RESUMO

Recent studies have implicated the acid-sensing ion channel 1 (ASIC1), a proton-gated cation channel that belongs to the epithelial sodium channel (ENaC)/Degenerin family, plays an important role in glioma cell migration. Among the ASIC subunits, only ASIC1a has been found be calcium permeable. However, it has not been determined whether Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates ASIC1 in glioblastoma multiforme (GBM). Herein, we report that ASIC1 and CaMKII assemble to form a functional complex at the plasma membrane of GBM cells. We found that migration ability was significantly attenuated in GBM cells that were pre-treated with autocamtide-2-related inhibitory peptide (AIP), a CaMKII-specific inhibitor, or psalmotoxin 1 (PcTX-1), a selective ASIC1 blocker. Furthermore, the inhibitory effect of AIP or PcTX-1 on migration was diminished when ASIC1 was knocked down in GBM cells; when ASIC1 knockdown GBM cells were concurrently treated with these two inhibitors, cell migration was slightly but significantly decreased. Using whole-cell patch-clamp recordings, we detected an amiloride-sensitive current in GBM cells, and this current was significantly inhibited by both PcTX-1 and AIP. Moreover, the magnitude of this current was dramatically decreased when ASIC1 was knocked down in GBM cells. The addition of AIP failed to further decrease the amplitude of this current. Taken together, these data suggest that ASIC1 and CaMKII form a functional complex in GBM cells. Furthermore, it can be concluded that CaMKII regulates the activity of ASIC1, which is associated with the ability of GBM cells to migrate.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cálcio/metabolismo , Glioblastoma/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Técnicas de Patch-Clamp
4.
Eur J Pharm Biopharm ; 84(3): 505-16, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23376242

RESUMO

Targeting of intracerebral functional regions has been limited by the inability to transport drugs across the blood-brain barrier (BBB) and by poor accumulation in these regions. To overcome these hurdles, liposomes modified with P-aminophenyl-α-d-mannopyranoside (MAN) were used as a fluorescent dye carrier through the BBB and used the specific distribution of liposomes (LIP) modified with MAN (MAN-LIP) to target various functional regions of the brain. An in vitro BBB model was established to evaluate the transendothelial ability of MAN-LIP, and liposomes uptake by C6 glioma cells was analyzed by flow cytometry and live cell imaging. Liposome targeting was evaluated using in vivo and ex vivo imaging. After MAN-LIP administration, the transendothelial ability and the delivery of fluorescent dye to the brain significantly increased. MAN-LIP concentrated in the cortex at 4 h, shifting distribution to the cerebellum and brainstem at 12 h. The fluorescence intensity in the hippocampus and pontine nuclei remained high and stable over a period of 12 h. The results demonstrate that MAN-LIP is able to enhance cellular uptake in vitro and also promotes penetration through the BBB and accumulation in the brain with a distinct spatio-temporal pattern.


Assuntos
Compostos de Anilina/química , Encéfalo/fisiologia , Portadores de Fármacos , Lipossomos/química , Manosídeos/química , Animais , Barreira Hematoencefálica , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Meios de Cultura/química , Endocitose , Citometria de Fluxo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Fatores de Tempo
5.
CNS Neurosci Ther ; 19(2): 109-16, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23253187

RESUMO

AIMS: To examine a novel strategy to enhance the survival of grafted neural stem cells (NSCs) in stroke model. METHODS: Using a cell counting kit-8 (CCK-8) and TUNEL assay to test the protective effects of p53 inhibitor, pifithrin-α (PFT-α), on oxygen glucose deprivation (OGD) in NSCs. We compared the effects of vehicle + NSCs and FFT-α + NSCs on the efficacy of transplantation in stroke rat model using behavioral analysis, immunohistochemistry, etc. RESULTS: Pifithrin-α increased viability and decreased apoptosis in NSCs after OGD in vitro. By in vivo studies, we showed that the best recovery of neurological function in the stroke rats and the maximum survival of grafted NSCs were found in the PFT-α + NSCs group. Twelve hours after cell transplantation, p53 was localized to the nuclei of grafted NSCs in the vehicle + NSCs group but was primarily localized to the cytoplasm in the PFT-α + NSCs group. The p53-upregulated modulator of apoptosis (PUMA) was highly expressed among the grafted cells in the vehicle + NSCs group compared with that in the PFT-α + NSCs group. CONCLUSION: Our results indicate that PFT-α enhances the survival of grafted NSCs through the inhibition of p53 translocation into the nucleus.


Assuntos
Benzotiazóis/administração & dosagem , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/terapia , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53/antagonistas & inibidores , Regulação para Cima/fisiologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Terapia Combinada/métodos , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Tolueno/administração & dosagem , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...