Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667959

RESUMO

Polyunsaturated fatty acids (PUFAs), as important components of lipids, play indispensable roles in the development of all organisms. ∆12 fatty acid desaturase (FAD12) is a speed-determining step in the biosynthesis of PUFAs. Here, we report the characterization of FAD12 in Fusarium graminearum, which is the prevalent agent of Fusarium head blight, a destructive plant disease worldwide. The results demonstrated that deletion of the FgFAD12 gene resulted in defects in vegetative growth, conidial germination and plant pathogenesis but not sexual reproduction. A fatty acid analysis further proved that the deletion of FgFAD12 restrained the reaction of oleic acid to linoleic acid, and a large amount of oleic acid was detected in the cells. Moreover, the ∆Fgfad12 mutant showed increased resistance to osmotic stress and reduced tolerance to oxidative stress. The expression of FgFAD12 did show a temperature-dependent manner, which was not affected at a low temperature of 10 °C when compared to 25 °C. RNA-seq analysis further demonstrated that most genes enriched in fatty acid metabolism, the biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, fatty acid degradation, steroid biosynthesis and fatty acid elongation pathways were significantly up-regulated in the ∆Fgfad12 mutants. Overall, our results indicate that FgFAD12 is essential for linoleic acid biosynthesis and plays an important role in the infection process of F. graminearum.

2.
Toxins (Basel) ; 14(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422962

RESUMO

Aspergillus flavus and the produced aflatoxins cause great hazards to food security and human health across all countries. The control of A. flavus and aflatoxins in grains during storage is of great significance to humans. In the current study, bacteria strain YM6 isolated from sea sediment was demonstrated effective in controlling A. flavus by the production of anti-fungal volatiles. According to morphological characteristics and phylogenetic analysis, strain YM6 was identified as Pseudomonas stutzeri. YM6 can produce abundant volatile compounds which could inhibit mycelial growth and conidial germination of A. flavus. Moreover, it greatly prevented fungal infection and aflatoxin production on maize and peanuts during storage. The inhibition rate was 100%. Scanning electron microscopy further supported that the volatiles could destroy the cell structure of A. flavus and prevent conidia germination on the grain surface. Gas chromatography/mass spectrometry revealed that dimethyl trisulfide (DMTS) with a relative abundance of 13% is the most abundant fraction in the volatiles from strain YM6. The minimal inhibitory concentration of DMTS to A. flavus conidia is 200 µL/L (compound volume/airspace volume). Thus, we concluded that Pseudomonas stutzeri YM6 and the produced DMTS showed great inhibition to A. flavus, which could be considered as effective biocontrol agents in further application.


Assuntos
Aflatoxinas , Pseudomonas stutzeri , Humanos , Aspergillus flavus/metabolismo , Aflatoxinas/análise , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...