Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6695): 557-563, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696573

RESUMO

Hydrogels are an attractive category of biointerfacing materials with adjustable mechanical properties, diverse biochemical functions, and good ionic conductivity. Despite these advantages, their application in electronics has been restricted because of their lack of semiconducting properties, and they have traditionally only served as insulators or conductors. We developed single- and multiple-network hydrogels based on a water-soluble n-type semiconducting polymer, endowing conventional hydrogels with semiconducting capabilities. These hydrogels show good electron mobilities and high on/off ratios, enabling the fabrication of complementary logic circuits and signal amplifiers with low power consumption and high gains. We demonstrate that hydrogel electronics with good bioadhesive and biocompatible interface can sense and amplify electrophysiological signals with enhanced signal-to-noise ratios.

2.
Angew Chem Int Ed Engl ; 63(6): e202313260, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37938169

RESUMO

Conjugated polymers that can efficiently transport both ionic and electronic charges have broad applications in next-generation optoelectronic, bioelectronic, and energy storage devices. To date, almost all the conjugated polymers have hydrophobic backbones, which impedes efficient ion diffusion/transport in aqueous media. Here, we design and synthesize a novel hydrophilic polymer building block, 4a-azonia-naphthalene (AN), drawing inspiration from biological systems. Because of the strong electron-withdrawing ability of AN, the AN-based polymers show typical n-type charge transport behaviors. We find that cationic aromatics exhibit strong cation-π interactions, leading to smaller π-π stacking distance, interesting ion diffusion behavior, and good morphology stability. Additionally, AN enhances the hydrophilicity and ionic-electronic coupling of the polymer, which can help to improve ion diffusion/injection speed, and operational stability of organic electrochemical transistors (OECTs). The integration of cationic building blocks will undoubtedly enrich the material library for high-performance n-type conjugated polymers.

3.
Nat Commun ; 13(1): 5970, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216813

RESUMO

High-performance n-type organic electrochemical transistors (OECTs) are essential for logic circuits and sensors. However, the performances of n-type OECTs lag far behind that of p-type ones. Conventional wisdom posits that the LUMO energy level dictates the n-type performance. Herein, we show that engineering the doped state is more critical for n-type OECT polymers. By balancing more charges to the donor moiety, we could effectively switch a p-type polymer to high-performance n-type material. Based on this concept, the polymer, P(gTDPP2FT), exhibits a record high n-type OECT performance with µC* of 54.8 F cm-1 V-1 s-1, mobility of 0.35 cm2 V-1 s-1, and response speed of τon/τoff = 1.75/0.15 ms. Calculations and comparison studies show that the conversion is primarily due to the more uniform charges, stabilized negative polaron, enhanced conformation, and backbone planarity at negatively charged states. Our work highlights the critical role of understanding and engineering polymers' doped states.

4.
Nat Commun ; 12(1): 1154, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608554

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) with tantalizing layer-dependent electronic and optical properties have emerged as a paradigm for integrated flat opto-electronic devices, but their widespread applications are hampered by challenges in deterministic fabrication with demanded shapes and thicknesses, as well as light field manipulation in such atomic-thick layers with negligible thicknesses compared to the wavelength. Here we demonstrate ultra-sensitive light field manipulation in full visible ranges based on MoS2 laser prints exfoliated with nanometric precisions. The nontrivial interfacial phase shifts stemming from the unique dispersion of MoS2 layers integrated on the metallic substrate empower an ultra-sensitive resonance manipulation up to 13.95 nm per MoS2 layer across the entire visible bands, which is up to one-order-of-magnitude larger than their counterparts. The interlayer van der Waals interactions and the anisotropic thermal conductivity of layered MoS2 films endow a laser exfoliation method for on-demand patterning MoS2 with atomic thickness precision and subwavelength feature sizes. With this, nanometric flat color prints and further amplitude-modulated diffractive components for binocular stereoscopic images can be realized in a facile and lithography-free fashion. Our results with demonstrated practicality unlock the potentials of, and pave the way for, widespread applications of emerging 2D flat optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...