Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 421, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697254

RESUMO

BACKGROUND: The receptor-like cytoplasmic kinases subfamily VII (RLCK-VII) is critical in regulating plant growth, development, and pattern-triggered immunity. However, a comprehensive exploration of these genes in the allotetraploid Gossypium hirsutum is still lacking. This study aimed to identify RLCK-VII genes in G. hirsutum and investigate their evolutionary history, structural features, expression patterns, and role in plant defense. RESULTS: Seventy-two RLCK-VII genes in the G. hirsutum genome were unveiled and classified into nine groups following their phylogenetic analysis with Arabidopsis thaliana. Group VII-1 was the largest, accounting for 28%, while Groups VII-2 and VII-3 had only one member each. The analysis using MCScanX revealed that these 72 genes formed 166 collinear gene pairs and were resided on 26 chromosomes of G. hirsutum, suggesting that they were derived from whole genome segmental duplication events. Their calculated Ka/Ks values were below one, implying the occurrence of purification selection during the evolution and inhibition of gene function differentiation/loss. All members of the RLCK-VII subfamily possessed two conserved domains, PKinase-Tyr and PKinase, and several conserved PBS1 kinase subdomains, individually included in one of the ten motifs identified using MEME. The RNA-Seq results showed that RLCK-VII genes exhibited different spatiotemporal expression, indicating their involvement in cotton growth, development, and defense responses to Verticillium dahliae. The transcription patterns of RLCK-VII genes found by RNA-Seq were further validated using qRT-PCR assays after inoculating "20B12" (cotton cultivar) with "V991" (V. dahliae). The virus-induced gene silencing (VIGS) assays uncovered that two RLCK-VII genes (Gohir.A13G227248 and Gohir.A10G219900) were essential to G. hirsutum resistance to Verticillium wilt. CONCLUSIONS: These observations offer valuable insight into the attributes and roles of RLCK-VII genes in G. hirsutum, potentially enable the breeding of new cotton cultivars with enhanced resistance to Verticillium wilt.


Assuntos
Arabidopsis , Verticillium , Gossypium/genética , Filogenia , Melhoramento Vegetal , Citoplasma
2.
Gene ; 549(1): 123-33, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25058695

RESUMO

BACKGROUND: Aldehyde dehydrogenases (ALDHs) are members of the NAD(P)(+)-dependent protein superfamily which catalyzes aliphatic and aromatic aldehyde oxidation to non-toxic carboxylic acids. ALDH genes may offer promise for improving plant adaptation to environmental stress. Recently, elucidated genome sequences of Gossypium raimondii provide a foundation for systematic identification and analysis of ALDH genes. To date, this has been accomplished for many plant species except G. raimondii. RESULTS: In this study, thirty unique ALDH sequences that code for 10 ALDH families were identified in the G. raimondii genome. Phylogenetic analysis revealed that ALDHs were split into six clades in G. raimondii, and ALDH proteins from the same families were clustered together. Phylogenetic relationships of ALDHs from 11 plant species suggest that ALDHs in G. raimondii shared the highest protein homology with ALDHs from poplar. Members within ALDH families possessed homologous exon-intron structures. Chromosomal distribution of ALDH did not occur evenly in the G. raimondii genome and many ALDH genes were involved in the syntenic region as documented by identification of physical locations among single chromosomes. In addition, syntenic analysis revealed that homologues of many G. raimondii ALDHs appeared in corresponding Arabidopsis and poplar syntenic blocks, indicating that these genes arose prior to G. raimondii, Arabidopsis and poplar speciation. Finally, based on gene expression analysis of microarray and RNA-seq, we can speculate that some G. raimondii ALDH genes might respond to drought or waterlogging stresses. CONCLUSION: Genome-wide identification and analysis of the evolution and expression of ALDH genes in G. raimondii laid a foundation for studying this gene superfamily and offers new insights into the evolution history and speculated roles in Gossypium. These data can be used to inform functional genomic studies and molecular breeding in cotton.


Assuntos
Aldeído Desidrogenase/genética , Gossypium/enzimologia , Família Multigênica , Proteínas de Plantas/genética , Cromossomos de Plantas , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Ordem dos Genes , Genes de Plantas , Genoma de Planta , Gossypium/classificação , Gossypium/genética , Gossypium/fisiologia , Filogenia , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...