Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 24(9): 2223-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23712537

RESUMO

Cell-based regenerative therapies for bone defects usually employ bone precursor cells seeded on solid scaffolds. Thermosensitive hydrogels that harden at body core temperature are promising alternative cell carriers as they are applicable minimally invasively. We modified Pluronic® P123 with different chain extenders and assessed rheology and biocompatibility of the resulting hydrogels. The best candidate was tested in a rat's femoral defect model. All gels hardened above 25 °C with butane-diisocyanate-hydrogels (BDI-gels) displaying the highest storage moduli. BDI-gels showed the most favourable biocompatibility and did not affect cellular adipogenic or osteogenic differentiation in vitro. Implantation of BDI-hydrogel into femoral defects did not impede bone healing in vivo as evidenced by µCT and histological analysis. We conclude that thermosensitive BDI-gels are promising alternative cell carriers. The gels harden upon injection in vivo without interfering with bone metabolism. Further experiments will assess the gels' capacity to effectively transport living cells into bone defects.


Assuntos
Temperatura Corporal , Hidrogéis/química , Poloxâmero/química , Animais , Materiais Biocompatíveis , Técnicas In Vitro , Ratos , Reologia
2.
Tissue Eng Part A ; 19(13-14): 1534-42, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23387321

RESUMO

The implantation of osteochondral constructs-tissue-engineered (TE) cartilage on a bone substitute carrier-is a promising method to treat defects in articular cartilage. Currently, however, the TE cartilage's mechanical properties are clearly inferior to those of native cartilage. Their improvement has been the subject of various studies, mainly focusing on growth factors and physical loading during cultivation. With the approach of osteochondral constructs another aspect arises: the permeability of the carrier materials. The purpose of this study was to investigate whether and how the permeability of the subchondral bone influences the properties of native cartilage and whether the bone substitute carrier's permeability influences the TE cartilage of osteochondral constructs accordingly. Consequently, the influence of the subchondral bone's permeability on native cartilage was determined: Native porcine cartilage-bone cylinders were cultivated for 2 weeks in a bioreactor under mechanical loading with and without restricted permeability of the bone. For the TE cartilage these two permeability conditions were investigated using permeable and impermeable tricalciumphosphate carriers under equivalent cultivation conditions. All specimens were evaluated mechanically, biochemically, and histologically. The restriction of the bone's permeability significantly decreased the Young's modulus of native cartilage in vitro. No biochemical differences were found. This finding was confirmed for TE cartilage: While the biochemical parameters were not affected, a permeable carrier improved the cell morphology and mechanical properties in comparison to an impermeable one. In conclusion, the carrier permeability was identified as a determining factor for the mechanical properties of TE cartilage of osteochondral constructs.


Assuntos
Reatores Biológicos , Cartilagem/fisiologia , Engenharia Tecidual/métodos , Animais , Condrócitos/citologia , Módulo de Elasticidade , Feminino , Estresse Mecânico , Suínos
3.
Res Vet Sci ; 93(1): 457-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21940026

RESUMO

Adult stem cells are of particular interest for therapeutic use in the field of regenerative medicine. Adipose-derived mesenchymal stem cells (ASCs) are an attractive stem cell source for all fields of regenerative medicine because adipose tissue - and therewith cells - can easily be harvested from each donor. However, common expansion using fetal bovine serum (FBS) can not be used for clinical applications as xenogenic proteins must be avoided. Adipose tissue from equine, canine and porcine donors was digested with collagenase to isolate ASCs. ASCs were either expanded in a cell culture medium supplemented with FBS or in a serum-free medium (UltraCulture; UC) supplemented with a serum substitute (UltroserG). From all three animal species, the adipogenic and osteogenic differentiation potential of ASCs cultured with different media was analyzed in vitro. Cell proliferation analysis showed a population doubling time of 48-68 h for canine cells, 54-65 h for porcine cells and 54-70 h for equine cells, expanded in different media. Except for porcine ASCs, cells cultured in media supplemented with FBS grew faster than cells expanded in UC medium with UltroserG. Yet, all cells maintained their potential to differentiate into adipocytes and osteoblasts. UltraCulture medium containing UltroserG can for all examined species be recommended if FBS needs to be avoided in the expansion of donor-derived (stem) cells.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/fisiologia , Proliferação de Células , Meios de Cultura/metabolismo , Células-Tronco Mesenquimais/fisiologia , Adipócitos/fisiologia , Animais , Contagem de Células/veterinária , Cães , Feminino , Cavalos , Masculino , Osteoblastos/fisiologia , Suínos
4.
Vet Res Commun ; 35(8): 487-99, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21755422

RESUMO

Adult stem cells are of particular interest for the therapeutic approach in the field of regenerative medicine. Due to their ease of harvest, adipose-derived mesenchymal stem cells (ASCs) are an attractive stem cell source that has become increasingly popular. Critical aspects of applied cell therapies are the circumstances of transport from the laboratory towards the site of operation and cell delivery into the desired area. With regard to these issues, agarose-hydrogel was analyzed as a cell carrier matrix of equine and canine ASCs in vitro, which can be used for minimally invasive application. Isolated ASCs were expanded and 2.5 × 10(6) cells were combined with agarose-hydrogel to build a 0.4% hydrogel-cell solution which was stored at two temperatures (room temperature (RT) vs. 37 °C). Cell viability was investigated (live-dead assay) at different time points (0, 1, 6 and 24 h) in order to determine i) the effect of different temperatures on the cell survival as well as ii) the maximum possible time span before implantation. CFU-assay and WST-1 assay were performed after 24 h incubation in agarose-hydrogel and the cells were induced into adipogenic and osteogenic differentiation to analyze the effects of the incubation on the cell behaviour. No negative effect of the agarose-hydrogel incubation was determined on the different species' cell behaviour at either RT or 37 °C with any of the assays used. We can recommend agarose-hydrogel as a cell carrier for cell implantation with a storage period of up to 24 h at room temperature or at 37 °C prior to implantation.


Assuntos
Tecido Adiposo/citologia , Cavalos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Sefarose/química , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Cães , Feminino , Hidrogéis/química , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...