Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(24): 240401, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563276

RESUMO

Uncertainty relations express limits on the extent to which the outcomes of distinct measurements on a single state can be made jointly predictable. The existence of nontrivial uncertainty relations in quantum theory is generally considered to be a way in which it entails a departure from the classical worldview. However, this perspective is undermined by the fact that there exist operational theories which exhibit nontrivial uncertainty relations but which are consistent with the classical worldview insofar as they admit of a generalized-noncontextual ontological model. This prompts the question of what aspects of uncertainty relations, if any, cannot be realized in this way and so constitute evidence of genuine nonclassicality. We here consider uncertainty relations describing the tradeoff between the predictability of a pair of binary-outcome measurements (e.g., measurements of Pauli X and Pauli Z observables in quantum theory). We show that, for a class of theories satisfying a particular symmetry property, the functional form of this predictability tradeoff is constrained by noncontextuality to be below a linear curve. Because qubit quantum theory has the relevant symmetry property, the fact that its predictability tradeoff describes a section of a circle is a violation of this noncontextual bound, and therefore constitutes an example of how the functional form of an uncertainty relation can witness contextuality. We also deduce the implications for a selected group of operational foils to quantum theory and consider the generalization to three measurements.

2.
Proc Math Phys Eng Sci ; 473(2202): 20160607, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28690401

RESUMO

Huw Price has proposed an argument that suggests a time symmetric ontology for quantum theory must necessarily be retrocausal, i.e. it must involve influences that travel backwards in time. One of Price's assumptions is that the quantum state is a state of reality. However, one of the reasons for exploring retrocausality is that it offers the potential for evading the consequences of no-go theorems, including recent proofs of the reality of the quantum state. Here, we show that this assumption can be replaced by a different assumption, called λ-mediation, that plausibly holds independently of the status of the quantum state. We also reformulate the other assumptions behind the argument to place them in a more general framework and pin down the notion of time symmetry involved more precisely. We show that our assumptions imply a timelike analogue of Bell's local causality criterion and, in doing so, give a new interpretation of timelike violations of Bell inequalities. Namely, they show the impossibility of a (non-retrocausal) time symmetric ontology.

3.
Phys Rev Lett ; 99(24): 240501, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18233430

RESUMO

We prove a generalized version of the no-broadcasting theorem, applicable to essentially any nonclassical finite-dimensional probabilistic model satisfying a no-signaling criterion, including ones with "superquantum" correlations. A strengthened version of the quantum no-broadcasting theorem follows, and its proof is significantly simpler than existing proofs of the no-broadcasting theorem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...