Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(1): e0209321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107346

RESUMO

Methanocaldococcus sp. strain FS406-22, a hyperthermophilic methanogen, fixes nitrogen with a minimal set of known nif genes. Only four structural nif genes, nifH, nifD, nifK, and nifE, are present in a cluster, and a nifB homolog is present elsewhere in the genome. nifN, essential for the final synthesis of the iron-molybdenum cofactor of nitrogenase in well-characterized diazotrophs, is absent from FS406-22. In addition, FS406-22 encodes four novel hypothetical proteins, and a ferredoxin, in the nif cluster. Here, we develop a set of genetic tools for FS406-22 and test the functionality of genes in the nif cluster by making markerless in-frame deletion mutations. Deletion of the gene for one hypothetical protein, designated Hp4, delayed the initiation of diazotrophic growth and decreased the growth rate, an effect we confirmed by genetic complementation. NifE also appeared to play a role in diazotrophic growth, and the encoding of Hp4 and NifE in a single operon suggested they may work together in some way in the synthesis of the nitrogenase cofactor. No role could be discerned for any of the other hypothetical proteins, nor for the ferredoxin, despite the presence of these genes in a variety of related organisms. Possible pathways and evolutionary scenarios for the synthesis of the nitrogenase cofactor in an organism that lacks nifN are discussed. IMPORTANCEMethanocaldococcus has been considered a model genus, but genetic tools have not been forthcoming until recently. Here, we develop and illustrate the utility of positive selection with either of two selective agents (simvastatin and neomycin), negative selection, generation of markerless in-frame deletion mutations, and genetic complementation. These genetic tools should be useful for a variety of related species. We address the question of the minimal set of nif genes, which has implications for how nitrogen fixation evolved.


Assuntos
Proteínas de Bactérias/genética , Methanocaldococcus/genética , Fixação de Nitrogênio/genética , Nitrogenase/genética , Genes Bacterianos/genética , Methanocaldococcus/enzimologia , Methanocaldococcus/metabolismo , Nitrogenase/metabolismo , Óperon , Regiões Promotoras Genéticas , Deleção de Sequência
2.
J Bacteriol ; 198(24): 3379-3390, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27736793

RESUMO

Hydrogenotrophic methanogenesis occurs in multiple environments, ranging from the intestinal tracts of animals to anaerobic sediments and hot springs. Energy conservation in hydrogenotrophic methanogens was long a mystery; only within the last decade was it reported that net energy conservation for growth depends on electron bifurcation. In this work, we focus on Methanococcus maripaludis, a well-studied hydrogenotrophic marine methanogen. To better understand hydrogenotrophic methanogenesis and compare it with methylotrophic methanogenesis that utilizes oxidative phosphorylation rather than electron bifurcation, we have built iMR539, a genome scale metabolic reconstruction that accounts for 539 of the 1,722 protein-coding genes of M. maripaludis strain S2. Our reconstructed metabolic network uses recent literature to not only represent the central electron bifurcation reaction but also incorporate vital biosynthesis and assimilation pathways, including unique cofactor and coenzyme syntheses. We show that our model accurately predicts experimental growth and gene knockout data, with 93% accuracy and a Matthews correlation coefficient of 0.78. Furthermore, we use our metabolic network reconstruction to probe the implications of electron bifurcation by showing its essentiality, as well as investigating the infeasibility of aceticlastic methanogenesis in the network. Additionally, we demonstrate a method of applying thermodynamic constraints to a metabolic model to quickly estimate overall free-energy changes between what comes in and out of the cell. Finally, we describe a novel reconstruction-specific computational toolbox we created to improve usability. Together, our results provide a computational network for exploring hydrogenotrophic methanogenesis and confirm the importance of electron bifurcation in this process. IMPORTANCE: Understanding and applying hydrogenotrophic methanogenesis is a promising avenue for developing new bioenergy technologies around methane gas. Although a significant portion of biological methane is generated through this environmentally ubiquitous pathway, existing methanogen models portray the more traditional energy conservation mechanisms that are found in other methanogens. We have constructed a genome scale metabolic network of Methanococcus maripaludis that explicitly accounts for all major reactions involved in hydrogenotrophic methanogenesis. Our reconstruction demonstrates the importance of electron bifurcation in central metabolism, providing both a window into hydrogenotrophic methanogenesis and a hypothesis-generating platform to fuel metabolic engineering efforts.


Assuntos
Genoma Arqueal , Metano/metabolismo , Mathanococcus/genética , Mathanococcus/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Crescimento Quimioautotrófico , Hidrogênio/metabolismo , Redes e Vias Metabólicas
3.
Curr Opin Biotechnol ; 29: 70-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24662145

RESUMO

Methanogenesis is an anaerobic metabolism responsible for the generation of >90% of the methane formed on Earth today, with important implications for fuels production and global warming. Although methanogenic Archaea have been cultured for over 70 years, key insights regarding electron flow and energy conservation in methanogenesis have only recently emerged. Fundamental differences between two metabolic types of methanogenesis, hydrogenotrophic and methylotrophic, are now understood, with implications for metabolic versatility and the potential for engineering of methanogens to utilize new substrates. The development of model species with genetic and bioinformatic tools has advanced the field and holds potential for further characterizing and engineering of methanogenesis. Our understanding of a related pathway, anaerobic methane oxidation, is in its infancy.


Assuntos
Metano/metabolismo , Carbono/metabolismo , Transporte de Elétrons , Humanos , Hidrogênio/metabolismo
4.
Genome Res ; 23(11): 1839-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24089473

RESUMO

Methanogens catalyze the critical methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and noncoding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-regulatory influence network (EGRIN) model of the strain was constructed from a compendium of transcriptome data that was collected over 58 different steady-state and time-course experiments that were performed in chemostats or batch cultures under a spectrum of environmental perturbations that modulated methanogenesis. Analyses of the EGRIN model have revealed novel components of methanogenesis that included at least three additional protein-coding genes of previously unknown function as well as one noncoding RNA. We discovered that at least five regulatory mechanisms act in a combinatorial scheme to intercoordinate key steps of methanogenesis with different processes such as motility, ATP biosynthesis, and carbon assimilation. Through a combination of genetic and environmental perturbation experiments we have validated the EGRIN-predicted role of two novel transcription factors in the regulation of phosphate-dependent repression of formate dehydrogenase-a key enzyme in the methanogenesis pathway. The EGRIN model demonstrates regulatory affiliations within methanogenesis as well as between methanogenesis and other cellular functions.


Assuntos
Genes Arqueais , Redes e Vias Metabólicas/genética , Metano/biossíntese , Mathanococcus/enzimologia , Mathanococcus/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Formiato Desidrogenases/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica em Archaea , Interação Gene-Ambiente , Hidrogênio/metabolismo , Mathanococcus/metabolismo , Modelos Genéticos , Deleção de Sequência
5.
J Bacteriol ; 195(22): 5160-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24039260

RESUMO

Flavin-based electron bifurcation has recently been characterized as an essential energy conservation mechanism that is utilized by hydrogenotrophic methanogenic Archaea to generate low-potential electrons in an ATP-independent manner. Electron bifurcation likely takes place at the flavin associated with the α subunit of heterodisulfide reductase (HdrA). In Methanococcus maripaludis the electrons for this reaction come from either formate or H2 via formate dehydrogenase (Fdh) or Hdr-associated hydrogenase (Vhu). However, how these enzymes bind to HdrA to deliver electrons is unknown. Here, we present evidence that the δ subunit of hydrogenase (VhuD) is central to the interaction of both enzymes with HdrA. When M. maripaludis is grown under conditions where both Fdh and Vhu are expressed, these enzymes compete for binding to VhuD, which in turn binds to HdrA. Under these conditions, both enzymes are fully functional and are bound to VhuD in substoichiometric quantities. We also show that Fdh copurifies specifically with VhuD in the absence of other hydrogenase subunits. Surprisingly, in the absence of Vhu, growth on hydrogen still occurs; we show that this involves F420-reducing hydrogenase. The data presented here represent an initial characterization of specific protein interactions centered on Hdr in a hydrogenotrophic methanogen that utilizes multiple electron donors for growth.


Assuntos
Proteínas Arqueais/metabolismo , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Hidrogênio/metabolismo , Mathanococcus/enzimologia , Mathanococcus/metabolismo , Oxirredutases/metabolismo , Elétrons , Metabolismo Energético , Ligação Proteica
6.
FEMS Microbiol Lett ; 343(2): 156-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23551135

RESUMO

The H2 -dependent methylene-tetrahydromethanopterin dehydrogenase (Hmd), also known as the [Fe]-hydrogenase, is found only in methanogens without cytochromes. In contrast to the binuclear metal centers of the [NiFe]- and [FeFe]-hydrogenases, the [Fe]-hydrogenase contains only a single Fe atom, which is coordinated by a novel guanylylpyridinol cofactor in the active site. The biosynthesis of the cofactor is not well understood and the responsible genes are unknown. However, seven genes (hmd co-occurring genes, hcg) encoding proteins of unknown function are always associated with the hmd gene. In the model methanogen Methanococcus maripaludis, we used a genetic background in which a deletion of hmd had a distinct growth phenotype, and made null-mutations in each hcg gene as well as in a gene encoding the Hmd paralog HmdII, which is hypothesized to function as a scaffold for cofactor synthesis. Deletions in all seven hcg genes resulted in the same growth phenotype as a deletion in hmd, suggesting they are required for Hmd function. In all cases, genetic complementation of the mutation restored the wild-type phenotype. A deletion in hmdII had no effect.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mathanococcus/genética , Mathanococcus/metabolismo , Fenótipo , Ordem dos Genes , Família Multigênica , Mutação
7.
mBio ; 4(2)2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23443005

RESUMO

UNLABELLED: Hydrogenotrophic methanogenic Archaea require reduced ferredoxin as an anaplerotic source of electrons for methanogenesis. H(2) oxidation by the hydrogenase Eha provides these electrons, consistent with an H(2) requirement for growth. Here we report the identification of alternative pathways of ferredoxin reduction in Methanococcus maripaludis that operate independently of Eha to stimulate methanogenesis. A suppressor mutation that increased expression of the glycolytic enzyme glyceraldehyde-3-phosphate:ferredoxin oxidoreductase resulted in a strain capable of H(2)-independent ferredoxin reduction and growth with formate as the sole electron donor. In this background, it was possible to eliminate all seven hydrogenases of M. maripaludis. Alternatively, carbon monoxide oxidation by carbon monoxide dehydrogenase could also generate reduced ferredoxin that feeds into methanogenesis. In either case, the reduced ferredoxin generated was inefficient at stimulating methanogenesis, resulting in a slow growth phenotype. As methanogenesis is limited by the availability of reduced ferredoxin under these conditions, other electron donors, such as reduced coenzyme F(420), should be abundant. Indeed, when F(420)-reducing hydrogenase was reintroduced into the hydrogenase-free mutant, the equilibrium of H(2) production via an F(420)-dependent formate:H(2) lyase activity shifted markedly toward H(2) compared to the wild type. IMPORTANCE: Hydrogenotrophic methanogens are thought to require H(2) as a substrate for growth and methanogenesis. Here we show alternative pathways in methanogenic metabolism that alleviate this H(2) requirement and demonstrate, for the first time, a hydrogenotrophic methanogen that is capable of growth in the complete absence of H(2). The demonstration of alternative pathways in methanogenic metabolism suggests that this important group of organisms is metabolically more versatile than previously thought.


Assuntos
Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Mathanococcus/crescimento & desenvolvimento , Mathanococcus/metabolismo , Ferredoxinas/metabolismo , Formiatos/metabolismo , Metano/metabolismo , Oxirredução
8.
J Bacteriol ; 195(7): 1456-62, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335420

RESUMO

Hydrogenotrophic methanogenic Archaea are defined by an H2 requirement for growth. Despite this requirement, many hydrogenotrophs are also capable of growth with formate as an electron donor for methanogenesis. While certain responses of these organisms to hydrogen availability have been characterized, responses to formate starvation have not been reported. Here we report that during continuous culture of Methanococcus maripaludis under defined nutrient conditions, growth yields relative to methane production decreased markedly with either H2 excess or formate excess. Analysis of the growth yields of several mutants suggests that this phenomenon occurs independently of the storage of intracellular carbon or a transcriptional response to methanogenesis. Using microarray analysis, we found that the expression of genes encoding coenzyme F420-dependent steps of methanogenesis, including one of two formate dehydrogenases, increased with H2 starvation but with formate occurred at high levels regardless of limitation or excess. One gene, encoding H2-dependent methylene-tetrahydromethanopterin dehydrogenase, decreased in expression with either H2 limitation or formate limitation. Expression of genes for the second formate dehydrogenase, molybdenum-dependent formylmethanofuran dehydrogenase, and molybdenum transport increased specifically with formate limitation. Of the two formate dehydrogenases, only the first could support growth on formate in batch culture where formate was in excess.


Assuntos
Formiatos/metabolismo , Regulação da Expressão Gênica em Archaea , Hidrogênio/metabolismo , Metano/metabolismo , Mathanococcus/crescimento & desenvolvimento , Mathanococcus/metabolismo , Meios de Cultura/química , Perfilação da Expressão Gênica , Análise em Microsséries , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 109(38): 15473-8, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22872868

RESUMO

Despite decades of study, electron flow and energy conservation in methanogenic Archaea are still not thoroughly understood. For methanogens without cytochromes, flavin-based electron bifurcation has been proposed as an essential energy-conserving mechanism that couples exergonic and endergonic reactions of methanogenesis. However, an alternative hypothesis posits that the energy-converting hydrogenase Eha provides a chemiosmosis-driven electron input to the endergonic reaction. In vivo evidence for both hypotheses is incomplete. By genetically eliminating all nonessential pathways of H(2) metabolism in the model methanogen Methanococcus maripaludis and using formate as an additional electron donor, we isolate electron flow for methanogenesis from flux through Eha. We find that Eha does not function stoichiometrically for methanogenesis, implying that electron bifurcation must operate in vivo. We show that Eha is nevertheless essential, and a substoichiometric requirement for H(2) suggests that its role is anaplerotic. Indeed, H(2) via Eha stimulates methanogenesis from formate when intermediates are not otherwise replenished. These results fit the model for electron bifurcation, which renders the methanogenic pathway cyclic, and as such requires the replenishment of intermediates. Defining a role for Eha and verifying electron bifurcation provide a complete model of methanogenesis where all necessary electron inputs are accounted for.


Assuntos
Proteínas de Bactérias/química , Hidrogenase/química , Metano/química , Elétrons , Ferredoxinas/química , Formiato Desidrogenases/metabolismo , Deleção de Genes , Hidrogênio/química , Hidrogenase/metabolismo , Mathanococcus/genética , Modelos Químicos , Mutação , Plasmídeos/metabolismo , Fatores de Tempo
10.
ISME J ; 6(11): 2045-55, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22739494

RESUMO

Methanococcus maripaludis grown syntrophically with Desulfovibrio vulgaris was compared with M. maripaludis monocultures grown under hydrogen limitation using transcriptional, proteomic and metabolite analyses. These measurements indicate a decrease in transcript abundance for energy-consuming biosynthetic functions in syntrophically grown M. maripaludis, with an increase in transcript abundance for genes involved in the energy-generating central pathway for methanogenesis. Compared with growth in monoculture under hydrogen limitation, the response of paralogous genes, such as those coding for hydrogenases, often diverged, with transcripts of one variant increasing in relative abundance, whereas the other was little changed or significantly decreased in abundance. A common theme was an apparent increase in transcripts for functions using H(2) directly as reductant, versus those using the reduced deazaflavin (coenzyme F(420)). The greater importance of direct reduction by H(2) was supported by improved syntrophic growth of a deletion mutant in an F(420)-dependent dehydrogenase of M. maripaludis. These data suggest that paralogous genes enable the methanogen to adapt to changing substrate availability, sustaining it under environmental conditions that are often near the thermodynamic threshold for growth. Additionally, the discovery of interspecies alanine transfer adds another metabolic dimension to this environmentally relevant mutualism.


Assuntos
Desulfovibrio vulgaris/crescimento & desenvolvimento , Mathanococcus/crescimento & desenvolvimento , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/metabolismo , Metabolismo Energético , Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Metano/metabolismo , Mathanococcus/genética , Mathanococcus/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteômica
11.
Genome Res ; 21(11): 1892-904, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21750103

RESUMO

Assembly of genes into operons is generally viewed as an important process during the continual adaptation of microbes to changing environmental challenges. However, the genome reorganization events that drive this process are also the roots of instability for existing operons. We have determined that there exists a statistically significant trend that correlates the proportion of genes encoded in operons in archaea to their phylogenetic lineage. We have further characterized how microbes deal with operon instability by mapping and comparing transcriptome architectures of four phylogenetically diverse extremophiles that span the range of operon stabilities observed across archaeal lineages: a photoheterotrophic halophile (Halobacterium salinarum NRC-1), a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and an anaerobic hyperthermophile (Pyrococcus furiosus DSM 3638). We demonstrate how the evolution of transcriptional elements (promoters and terminators) generates new operons, restores the coordinated regulation of translocated, inverted, and newly acquired genes, and introduces completely novel regulation for even some of the most conserved operonic genes such as those encoding subunits of the ribosome. The inverse correlation (r=-0.92) between the proportion of operons with such internally located transcriptional elements and the fraction of conserved operons in each of the four archaea reveals an unprecedented view into varying stages of operon evolution. Importantly, our integrated analysis has revealed that organisms adapted to higher growth temperatures have lower tolerance for genome reorganization events that disrupt operon structures.


Assuntos
Evolução Molecular , Genoma Arqueal , Transcriptoma , Adenosina Trifosfatases/genética , Archaea/classificação , Archaea/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica em Archaea , Genes Arqueais , Óperon , Filogenia , Regiões Promotoras Genéticas , Biossíntese de Proteínas/genética , Transporte de RNA , Transcrição Gênica , Ativação Transcricional
12.
Methods Enzymol ; 494: 43-73, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21402209

RESUMO

Methanogens are obligate anaerobic Archaea that produce energy from the biosynthesis of methane. These lithotrophic microorganisms are widely distributed in oxygen-free environments and participate actively in the carbon cycle. Indeed, methanogenesis plays a major role in the last step of the anoxic degradation of organic substances, transforming acetate, CO(2), and H(2) to methane. The vast majority of the known methanogens are classified as hydrogenotrophic because they use principally H(2) as the electron donor to drive the reduction of CO(2). Unlike many other cultured Archaea, many methanogens thrive in neutral pH, low salinity, and temperate environments. This has been a great advantage in cultivating these organisms in laboratory conditions and in the development of genetic tools. Moreover, the hydrogenotroph Methanococcus maripaludis is currently a model organism among Archaea, not only for its utility in genetic but also for biochemical and physiological studies. Over time, a broad spectrum of genetic tools and techniques has been developed for methanococci, such as site-directed mutagenesis, selectable markers, transformation methods, and reporter genes. These tools have contributed greatly to the overall understanding of this group of microorganisms and the processes that govern its life style. In this chapter, we describe in detail the available genetic tools for the hydrogenotrophic methanogens.


Assuntos
Archaea/metabolismo , Metano/metabolismo , Archaea/genética , Dióxido de Carbono/metabolismo , Genoma Arqueal/genética , Hidrogênio/metabolismo , Mathanococcus/genética , Mathanococcus/metabolismo , Mutagênese Sítio-Dirigida , Polietilenoglicóis
13.
Methods Enzymol ; 494: 111-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21402212

RESUMO

Hydrogen (H(2)) is a primary electron donor for methanogenesis and its availability can have profound effects on gene expression and the physiology of energy conservation. The rigorous evaluation of the effects of hydrogen conditions requires the comparison of cultures that are grown under hydrogen limitation and hydrogen excess. The growth of methanogens under defined hydrogen conditions is complicated by the dynamics of hydrogen dissolution and its utilization by the cells. In batch culture, gassing and agitation conditions must be carefully calibrated, and even then variations in growth rate and cell density are hard to avoid. Using chemostats, continuous cultures can be achieved whose nutritional states are known, while growth rate and cell density are invariant. Cultures whose growth is limited by hydrogen can be compared to cultures whose growth is limited by some other nutrient and are therefore under hydrogen excess.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Methanobacteriaceae/metabolismo , Methanococcaceae/crescimento & desenvolvimento , Methanococcaceae/metabolismo
14.
FEMS Microbiol Rev ; 35(4): 577-608, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21265868

RESUMO

The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.


Assuntos
Archaea/genética , Técnicas Genéticas , Genética Microbiana/métodos , Archaea/classificação , Bioquímica , Crenarchaeota/classificação , Crenarchaeota/genética , Euryarchaeota/classificação , Euryarchaeota/genética , Regulação da Expressão Gênica em Archaea , Modelos Genéticos , Filogenia
15.
Structure ; 18(11): 1512-21, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21070950

RESUMO

Plants and microorganisms reduce environmental inorganic nitrogen to ammonium, which then enters various metabolic pathways solely via conversion of 2-oxoglutarate (2OG) to glutamate and glutamine. Cellular 2OG concentrations increase during nitrogen starvation. We recently identified a family of 2OG-sensing proteins--the nitrogen regulatory protein NrpR--that bind DNA and repress transcription of nitrogen assimilation genes. We used X-ray crystallography to determine the structure of NrpR regulatory domain. We identified the NrpR 2OG-binding cleft and show that residues predicted to interact directly with 2OG are conserved among diverse classes of 2OG-binding proteins. We show that high levels of 2OG inhibit NrpRs ability to bind DNA. Electron microscopy analyses document that NrpR adopts different quaternary structures in its inhibited 2OG-bound state compared with its active apo state. Our results indicate that upon 2OG release, NrpR repositions its DNA-binding domains correctly for optimal interaction with DNA thereby enabling gene repression.


Assuntos
Regulação da Expressão Gênica em Archaea/genética , Ácidos Cetoglutáricos/metabolismo , Mathanococcus/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas PII Reguladoras de Nitrogênio/química , Conformação Proteica , Fatores de Transcrição/química , Microscopia Eletrônica , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Fatores de Transcrição/metabolismo
16.
Appl Environ Microbiol ; 76(16): 5644-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581182

RESUMO

Escherichia coli transforms the methanogenic archaeon Methanococcus maripaludis at frequencies ranging from 0.2 x 10(-6) to 2 x 10(-6) per recipient cell. Transformation requires cell-to-cell contact, oriT, and tra functions, is insensitive to DNase I, and otherwise displays hallmarks of conjugation.


Assuntos
Conjugação Genética , DNA Bacteriano/genética , Escherichia coli/genética , Transferência Genética Horizontal , Mathanococcus/genética , DNA Bacteriano/química , Técnicas de Transferência de Genes , Genes Bacterianos , Vetores Genéticos , Dados de Sequência Molecular , Plasmídeos , Análise de Sequência de DNA
17.
Proc Natl Acad Sci U S A ; 107(24): 11050-5, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20534465

RESUMO

In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway.


Assuntos
Proteínas Arqueais/metabolismo , Transporte de Elétrons , Mathanococcus/metabolismo , Oxirredutases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas Arqueais/genética , Sequência de Bases , Primers do DNA/genética , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Mathanococcus/genética , Mathanococcus/crescimento & desenvolvimento , Modelos Biológicos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Complexos Multiproteicos , Oxirredutases/genética
18.
Mol Microbiol ; 75(3): 755-62, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20025661

RESUMO

The euryarchaeal transcriptional repressor NrpR regulates a variety of nitrogen assimilation genes by 2-oxoglutarate-reversible binding to conserved palindromic operators. The number and positioning of these operators varies among promoter regions of regulated genes, suggesting NrpR can bind in different patterns. Particularly intriguing is the contrast between the nif and glnK(1) promoter regions of Methanococcus maripaludis, where two operators are present but with different configurations. Here we study NrpR binding and regulation at the glnK(1) promoter, where the two operator sequences overlap and occur on opposite faces of the double helix. We find that both operators function in binding, with a dimer of NrpR binding simultaneously to each overlapping operator. We show in vivo that the first operator plays a primary role in regulation and the second operator plays an enhancing role. This is the first demonstration of overlapping operators functioning in Archaea.


Assuntos
Proteínas Arqueais/genética , Regulação da Expressão Gênica em Archaea , Mathanococcus/genética , Óperon , Proteínas Repressoras/metabolismo , Proteínas Arqueais/metabolismo , Sítios de Ligação , Ácidos Cetoglutáricos/metabolismo , Mathanococcus/metabolismo , Nitrogênio/metabolismo , Regiões Operadoras Genéticas
19.
BMC Evol Biol ; 9: 199, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19671178

RESUMO

BACKGROUND: Methanogenesis is the sole means of energy production in methanogenic Archaea. H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) catalyzes a step in the hydrogenotrophic methanogenesis pathway in class I methanogens. At least one hmd paralog has been identified in nine of the eleven complete genome sequences of class I hydrogenotrophic methanogens. The products of these paralog genes have thus far eluded any detailed functional characterization. RESULTS: Here we present a thorough computational analysis of Hmd enzymes and paralogs that includes state of the art phylogenetic inference, structure prediction, and functional site prediction techniques. We determine that the Hmd enzymes are phylogenetically distinct from Hmd paralogs but share a common overall structure. We predict that the active site of the Hmd enzyme is conserved as a functional site in Hmd paralogs and use this observation to propose possible molecular functions of the paralog that are consistent with previous experimental evidence. We also identify an uncharacterized site in the N-terminal domains of both proteins that is predicted by our methods to directly impart function. CONCLUSION: This study contributes to our understanding of the evolutionary history, structural conservation, and functional roles, of the Hmd enzymes and paralogs. The results of our phylogenetic and structural analysis constitute datasets that will aid in the future study of the Hmd protein family. Our functional site predictions generate several testable hypotheses that will guide further experimental characterization of the Hmd paralog. This work also represents a novel approach to protein function prediction in which multiple computational methods are integrated to achieve a detailed characterization of proteins that are not well understood.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Filogenia , Sequência de Aminoácidos , Archaea/enzimologia , Biologia Computacional/métodos , Evolução Molecular , Genes Arqueais , Metano/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Relação Estrutura-Atividade
20.
BMC Microbiol ; 9: 149, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19627604

RESUMO

BACKGROUND: Methanogenic Archaea play key metabolic roles in anaerobic ecosystems, where they use H2 and other substrates to produce methane. Methanococcus maripaludis is a model for studies of the global response to nutrient limitations. RESULTS: We used high-coverage quantitative proteomics to determine the response of M. maripaludis to growth-limiting levels of H2, nitrogen, and phosphate. Six to ten percent of the proteome changed significantly with each nutrient limitation. H2 limitation increased the abundance of a wide variety of proteins involved in methanogenesis. However, one protein involved in methanogenesis decreased: a low-affinity [Fe] hydrogenase, which may dominate over a higher-affinity mechanism when H2 is abundant. Nitrogen limitation increased known nitrogen assimilation proteins. In addition, the increased abundance of molybdate transport proteins suggested they function for nitrogen fixation. An apparent regulon governed by the euryarchaeal nitrogen regulator NrpR is discussed. Phosphate limitation increased the abundance of three different sets of proteins, suggesting that all three function in phosphate transport. CONCLUSION: The global proteomic response of M. maripaludis to each nutrient limitation suggests a wider response than previously appreciated. The results give new insight into the function of several proteins, as well as providing information that should contribute to the formulation of a regulatory network model.


Assuntos
Proteínas Arqueais/metabolismo , Mathanococcus/crescimento & desenvolvimento , Mathanococcus/metabolismo , Proteômica/métodos , Proteínas Arqueais/genética , Regulação da Expressão Gênica em Archaea , Hidrogênio/metabolismo , Mathanococcus/genética , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Fosfatos/metabolismo , Regulon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...