Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 652944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881190

RESUMO

Bacterial infections contribute to accelerated progression and severity of chronic obstructive pulmonary disease (COPD). Apples have been associated with reduced symptoms of COPD and disease development due to their polyphenolic content. We examined if phloretin, an apple polyphenol, could inhibit bacterial growth and inflammation induced by the main pathogens associated with COPD. Phloretin displayed bacteriostatic and anti-biofilm activity against nontypeable Haemophilus influenzae (NTHi), Moraxella catarrhalis, Streptococcus pneumoniae, and to a lesser extent, Pseudomonas aeruginosa. In vitro, phloretin inhibited NTHi adherence to NCI-H292 cells, a respiratory epithelial cell line. Phloretin also exhibited anti-inflammatory activity in COPD pathogen-induced RAW 264.7 macrophages and human bronchial epithelial cells derived from normal and COPD diseased lungs. In mice, NTHi bacterial load and chemokine (C-X-C motif) ligand 1 (CXCL1), a neutrophil chemoattractant, was attenuated by a diet supplemented with phloretin. Our data suggests that phloretin is a promising antimicrobial and anti-inflammatory nutraceutical for reducing bacterial-induced injury in COPD.


Assuntos
Anti-Infecciosos , Infecções por Haemophilus , Doença Pulmonar Obstrutiva Crônica , Animais , Anti-Inflamatórios/farmacologia , Haemophilus influenzae , Camundongos , Floretina/farmacologia , Polifenóis/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
2.
Physiol Rep ; 9(19): e14997, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34605213

RESUMO

Acrolein is a reactive inhalation hazard. Acrolein's initial interaction, which in itself can be function-altering, is followed by time-dependent cascade of complex cellular and pulmonary responses that dictate the severity of the injury. To investigate the pathophysiological progression of sex-dependent acrolein-induced acute lung injury, C57BL/6J mice were exposed for 30 min to sublethal, but toxic, and lethal acrolein. Male mice were more sensitive than female mice. Acrolein of 50 ppm was sublethal to female but lethal to male mice, and 75 ppm was lethal to female mice. Lethal and sublethal acrolein exposure decreased bronchoalveolar lavage (BAL) total cell number at 3 h after exposure. The cell number decrease was followed by progressive total cell and neutrophil number and protein increases. The BAL total cell number in female mice exposed to a sublethal, but not lethal dose, returned to control levels at 16 h. In contrast, BAL protein content and neutrophil number were higher in mice exposed to lethal compared to sublethal acrolein. RNASeq pathway analysis identified greater increased lung neutrophil, glutathione metabolism, oxidative stress responses, and CCL7 (aka MCP-3), CXCL10 (aka IP-10), and IL6 transcripts in males than females, whereas IL10 increased more in female than male mice. Thus, the IL6:IL10 ratio, an indicator of disease severity, was greater in males than females. Further, H3.3 histone B (H3F3B) and pro-platelet basic protein (PPBP aka CXCL7), transcripts increased in acrolein exposed mouse BAL and plasma at 3 h, while H3F3B protein that is associated with neutrophil extracellular traps formation increased at 12 h. These results suggest that H3F3B and PPBP transcripts increase may contribute to extracellular H3F3B and PPBP proteins increase.


Assuntos
Acroleína/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/efeitos dos fármacos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fatores Sexuais
4.
J Asthma ; 58(9): 1143-1154, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32419535

RESUMO

BACKGROUND: Asthma characterized by airway hyperresponsiveness, inflammation, fibrosis, and angiogenesis. SRY-related HMG-box 18 (SOX18) is an important transcription factor involved in angiogenesis, tissue injury, wound-healing, and in embryonic cardiovascular and lymphatic vessels development. The role of angiogenic transcription factors, SOX18 and the related, prospero homeobox 1 (PROX1) and chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), in asthma has had limited study. OBJECTIVE: In this study, we aimed to elucidate the role of SOX18 in the pathogenesis of bronchial asthma. METHODS: Plasma SOX18 protein was measured in control subjects, and subject with stable or exacerbated asthma. SOX18, PROX1, and COUP-TFII protein was measured by western blot, and immunohistochemistry in a murine model of ovalbumin-induced allergic asthma (OVA). SOX18, PROX1, and COUP-TFII protein was measured in lung human microvascular endothelial cells (HMVEC-L) and normal human bronchial epithelial (NHBE) cells treated with house dust mite (Der p1). RESULTS: Plasma SOX18 tended to be higher in subject with asthma compared to control subjects and increased more during exacerbation as compared to stable disease. In mice, OVA challenge lead to increased lung SOX18, PROX1, COUP-TFII, mucous gland hyperplasia and submucosal collagen. In NHBE cells, SOX18, PROX1 and COUP-TFII increased following Der p1 treatment. SOX18 protein increased in HMVEC-L following Der p1 treatment. CONCLUSION: These results suggest that SOX18 may be involved in asthma pathogenesis and be associated with asthma exacerbation.


Assuntos
Asma/sangue , Fatores de Transcrição SOXF/sangue , Adulto , Idoso , Alérgenos/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Asma/imunologia , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Fator II de Transcrição COUP/imunologia , Linhagem Celular , Cisteína Endopeptidases/imunologia , Progressão da Doença , Feminino , Fibrose , Proteínas de Homeodomínio/imunologia , Humanos , Interleucina-5/imunologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Neovascularização Fisiológica , Ovalbumina/imunologia , Proteínas Supressoras de Tumor/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia
5.
Mol Nutr Food Res ; 65(2): e2000658, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216464

RESUMO

SCOPE: Bacterial infection induces mucus overproduction, contributing to acute exacerbations and lung function decline in chronic respiratory diseases. A diet enriched in apples may provide protection from pulmonary disease development and progression. This study examined whether phloretin, an apple polyphenol, inhibits mucus synthesis and secretion induced by the predominant bacteria associated with chronic respiratory diseases. METHODS AND RESULTS: The expression of mucus constituent mucin 5AC (MUC5AC) in FVB/NJ mice and NCI-H292 epithelial cells is analyzed. Nontypeable Haemophilus influenzae (NTHi)-infected mice developed increased MUC5AC mRNA, which a diet containing phloretin inhibited. In NCI-H292 cells, NTHi, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa increased MUC5AC mRNA, which phloretin inhibited. Phloretin also diminished NTHi-induced MUC5AC protein secretion. NTHi-induced increased MUC5AC required toll-like receptor 4 (TLR4) and NADH oxidase 4 (NOX4) signaling and subsequent activation of the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) pathway. Phloretin inhibited NTHi-induced TLR4/NOX4 and EGFR/MAPK signaling, thereby preventing increased MUC5AC mRNA. EGFR activation can also result from increased EGFR ligand synthesis and subsequent ligand activation by matrix metalloproteinases (MMPs). In NCI-H292 cells, NTHi increased EGFR ligand and MMP1 and MMP13 mRNA, which phloretin inhibited. CONCLUSIONS: In summary, phloretin is a promising therapeutic candidate for preventing bacterial-induced mucus overproduction.


Assuntos
Infecções por Haemophilus/dietoterapia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Malus/química , Mucina-5AC/antagonistas & inibidores , Floretina/farmacologia , Animais , Linhagem Celular , Suplementos Nutricionais , Células Epiteliais , Feminino , Infecções por Haemophilus/metabolismo , Infecções por Haemophilus/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Masculino , Camundongos Endogâmicos , Infecções por Moraxellaceae/dietoterapia , Infecções por Moraxellaceae/metabolismo , Infecções por Moraxellaceae/microbiologia , Mucina-5AC/metabolismo , Infecções por Pseudomonas/dietoterapia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Espécies Reativas de Oxigênio/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L41-L62, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33050709

RESUMO

In this study, a genetically diverse panel of 43 mouse strains was exposed to ammonia, and genome-wide association mapping was performed employing a single-nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was used to help resolve the genetic determinants of ammonia-induced acute lung injury. The encoded proteins were prioritized based on molecular function, nonsynonymous SNP within a functional domain or SNP within the promoter region that altered expression. This integrative functional approach revealed 14 candidate genes that included Aatf, Avil, Cep162, Hrh4, Lama3, Plcb4, and Ube2cbp, which had significant SNP associations, and Aff1, Bcar3, Cntn4, Kcnq5, Prdm10, Ptcd3, and Snx19, which had suggestive SNP associations. Of these genes, Bcar3, Cep162, Hrh4, Kcnq5, and Lama3 are particularly noteworthy and had pathophysiological roles that could be associated with acute lung injury in several ways.


Assuntos
Lesão Pulmonar Aguda/patologia , Amônia/toxicidade , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Transcriptoma , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA
7.
Cancer Res ; 81(1): 144-157, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122306

RESUMO

Chronic obstructive pulmonary disease (COPD) is an inflammatory disease that is associated with increased risk of lung cancer. Pseudomonas aeruginosa (PA) infections are frequent in patients with COPD, which increase lung inflammation and acute exacerbations. However, the influences of PA-induced inflammation on lung tumorigenesis and the efficacy of immune checkpoint blockade remain unknown. In this study, we initiated a murine model of lung cancer by treating FVB/NJ female mice with tobacco carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) alone or in combination with PA-lipopolysaccharide (LPS). LPS-mediated chronic inflammation induced T-cell exhaustion, increased the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis, and enhanced NNK-induced lung tumorigenesis through an immunosuppressive microenvironment characterized by accumulation of myeloid-derived suppressive cells (MDSC) and regulatory T cells. Anti-PD-1 antibody treatment reduced tumors in NNK/LPS-treated mice with a 10-week LPS treatment but failed to inhibit tumor growth when LPS exposure was prolonged to 16 weeks. Anti-Ly6G antibody treatment coupled with depletion of MDSC alone reduced tumor growth; when combined with anti-PD-1 antibody, this treatment further enhanced antitumor activity in 16-week NNK/LPS-treated mice. Immune gene signatures from a human lung cancer dataset of PD-1 blockade were identified, which predicted treatment responses and survival outcome and overlapped with those from the mouse model. This study demonstrated that LPS-mediated chronic inflammation creates a favorable immunosuppressive microenvironment for tumor progression and correlates with the efficacy of anti-PD-1 treatment in mice. Immune gene signatures overlap with human and mouse lung tumors, providing potentially predictive markers for patients undergoing immunotherapy. SIGNIFICANCE: This study identifies an immune gene signature that predicts treatment responses and survival in patients with tobacco carcinogen-induced lung cancer receiving immune checkpoint blockade therapy.


Assuntos
Butanonas/toxicidade , Carcinógenos/toxicidade , Inibidores de Checkpoint Imunológico/farmacologia , Inflamação/complicações , Lipopolissacarídeos/toxicidade , Neoplasias Pulmonares/patologia , Nicotiana/toxicidade , Nitrosaminas/toxicidade , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Camundongos , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Taxa de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
8.
Chem Res Toxicol ; 33(7): 1969-1979, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32530271

RESUMO

Albumin is an abundant protein in the lung lining fluid that forms an interface between lung epithelial cells and the external environment. In the lung, albumin can be targeted for adduction by inhaled acrolein. Acrolein, an α,ß-unsaturated aldehyde, reacts with biomolecules via Michael addition at the ß-carbon or Schiff base formation at the carbonyl carbon. To gain insight into acrolein's mode of action, we investigated in vitro albumin-acrolein reactivity and the consequence of albumin adduction by acrolein on cytotoxicity and transcript changes in NCI-H441 and human airway epithelial cells (HAEC). Albumin protected NCI-H441 cells from acrolein toxicity. In addition, albumin inhibited acrolein-induced increase of transcripts associated with cellular stress response, activating transcription factor 3 (ATF3), and antioxidant response, heme oxygenase 1 (HMOX1) in HAEC cells. Acrolein-adducted albumin itself increased HMOX1 transcripts but not ATF3 transcripts. The HMOX1 transcript increase was inhibited by hydralazine, a carbonyl scavenger, suggesting that the carbonyl group of acrolein-adducted albumin mediated HMOX1 transcript increase. In acutely exposed C57BL/6J mice, bronchoalveolar lavage protein carbonylation increased. Acrolein-adducted albumin Cys34 was identified by nLC-MS/MS. These findings indicate that adduction of albumin by acrolein confers a cytoprotective function by scavenging free acrolein, decreasing a cellular stress response, and inducing an antioxidant gene response. Further, these results suggest that ß-carbon reactivity may be required for acrolein's cytotoxicity and ATF3 transcript increase, and the carbonyl group of acrolein-adducted albumin can induce HMOX1 transcript increase.


Assuntos
Acroleína/toxicidade , Fator 3 Ativador da Transcrição/genética , Albuminas/metabolismo , Heme Oxigenase-1/genética , Pulmão/citologia , Animais , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica , Carbonilação Proteica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
9.
Exp Mol Med ; 52(3): 329-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203100

RESUMO

Particulate matter (PM) is the principal component of air pollution. PM includes a range of particle sizes, such as coarse, fine, and ultrafine particles. Particles that are <100 nm in diameter are defined as ultrafine particles (UFPs). UFPs are found to a large extent in urban air as both singlet and aggregated particles. UFPs are classified into two major categories based on their source. Typically, UFPs are incidentally generated in the environment, often as byproducts of fossil fuel combustion, condensation of semivolatile substances or industrial emissions, whereas nanoparticles are manufactured through controlled engineering processes. The primary exposure mechanism of PM is inhalation. Inhalation of PM exacerbates respiratory symptoms in patients with chronic airway diseases, but the mechanisms underlying this response remain unclear. This review offers insights into the mechanisms by which particles, including UFPs, influence airway inflammation and discusses several mechanisms that may explain the relationship between particulate air pollutants and human health, particularly respiratory health. Understanding the mechanisms of PM-mediated lung injury will enhance efforts to protect at-risk individuals from the harmful health effects of air pollutants.


Assuntos
Material Particulado/efeitos adversos , Pneumonia/induzido quimicamente , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Animais , Exposição Ambiental/efeitos adversos , Humanos , Inflamação , Tamanho da Partícula
10.
Proteome Sci ; 16: 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29375273

RESUMO

BACKGROUND: Acrolein (allyl Aldehyde) as one of smoke irritant exacerbates chronic airway diseases and increased in sputum of patients with asthma and chronic obstructive lung disease. But underlying mechanism remains unresolved. The aim of study was to identify protein expression in human lung microvascular endothelial cells (HMVEC-L) exposed to acrolein. METHODS: A proteomic approach was used to determine the different expression of proteins at 8 h and 24 h after treatment of acrolein 30 nM and 300 nM to HMVEC-L. Treatment of HMVEC-L with acrolein 30 nM and 300 nM altered 21 protein spots on the two-dimensional gel, and these were then analyzed by MALDI-TOF MS. RESULTS: These proteins included antioxidant, signal transduction, cytoskeleton, protein transduction, catalytic reduction. The proteins were classified into four groups according to the time course of their expression patterns such as continually increasing, transient increasing, transient decreasing, and continually decreasing. For validation immunohistochemical staining and Western blotting was performed on lung tissues from acrolein exposed mice. Moesin was expressed in endothelium, epithelium, and inflammatory cells and increased in lung tissues of acrolein exposed mice compared with sham treated mice. CONCLUSIONS: These results indicate that some of proteins may be an important role for airway disease exacerbation caused by acrolein exposure.

11.
Allergy Asthma Immunol Res ; 10(1): 25-33, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29178675

RESUMO

PURPOSE: Claudin-4 has been reported to function as a paracellular sodium barrier and is one of the 3 major claudins expressed in lung alveolar epithelial cells. However, the possible role of claudin-4 in bronchial asthma has not yet been fully studied. In this study, we aimed to elucidate the role of claudin-4 in the pathogenesis of bronchial asthma. METHODS: We determined claudin-4 levels in blood from asthmatic patients. Moreover, using mice sensitized and challenged with OVA, as well as sensitized and challenged with saline, we investigated whether claudin-4 is involved in the pathogenesis of bronchial asthma. Der p1 induced the inflammatory cytokines in NHBE cells. RESULTS: We found that claudin-4 in blood from asthmatic patients was increased compared with that from healthy control subjects. Plasma claudin-4 levels were significantly higher in exacerbated patients than in control patients with bronchial asthma. The plasma claudin-4 level was correlated with eosinophils, total IgE, FEV1% pred, and FEV1/FVC. Moreover, lung tissues from the OVA-OVA mice showed significant increases in transcripts and proteins of claudin-4 as well as in TJ breaks and the densities of claudin-4 staining. When claudin-4 was knocked down by transfecting its siRNA, inflammatory cytokine expressions, which were induced by Der p1 treatment, were significantly increased. CONCLUSIONS: These findings thus raise the possibility that regulation of lung epithelial barrier proteins may constitute a therapeutic approach for asthma.

12.
Respir Res ; 18(1): 152, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28793908

RESUMO

BACKGROUND: Failure to attain peak lung function by early adulthood is a risk factor for chronic lung diseases. Previously, we reported that C3H/HeJ mice have about twice total lung capacity (TLC) compared to JF1/MsJ mice. We identified seven lung function quantitative trait loci (QTL: Lfnq1-Lfnq7) in backcross/intercross mice derived from these inbred strains. We further demonstrated, superoxide dismutase 3, extracellular (Sod3), Kit oncogene (Kit) and secreted phosphoprotein 1 (Spp1) located on these Lfnqs as lung function determinants. Emanating from the concept of early origin of lung disease, we sought to identify novel candidate genes for pulmonary function by investigating lung transcriptome in C3H/HeJ and JF1/MsJ mice at the completion of embryonic development, bulk alveolar formation and maturity. METHODS: Design-based stereological analysis was performed to study lung structure in C3H/HeJ and JF1/MsJ mice. Microarray was used for lung transcriptomic analysis [embryonic day 18, postnatal days 28, 70]. Quantitative real time polymerase chain reaction (qRT-PCR), western blot and immunohistochemical analysis were used to confirm selected differences. RESULTS: Stereological analysis revealed decreased alveolar number density, elastin to collagen ratio and increased mean alveolar volume in C3H/HeJ mice compared to JF1/MsJ. Gene ontology term "extracellular region" was enriched among the decreased JF1/MsJ transcripts. Candidate genes identified using the expression-QTL strategy include: ATP-binding cassette, sub-family G (WHITE), member 1 (Abcg1), formyl peptide receptor 1 (Fpr1), gamma-aminobutyric acid (GABA) B receptor, 1 (Gabbr1); histocompatibility 2 genes: class II antigen E beta (H2-Eb1), D region locus 1 (H2-D1), and Q region locus 4 (H2-Q4); leucine rich repeat containing 6 (testis) (Lrrc6), radial spoke head 1 homolog (Rsph1), and surfactant associated 2 (Sfta2). Noteworthy genes selected as candidates for their consistent expression include: Wnt inhibitor factor 1 (Wif1), follistatin (Fst), chitinase-like 1 (Chil1), and Chil3. CONCLUSIONS: Comparison of late embryonic, adolescent and adult lung transcript profiles between mouse strains with extreme TLCs lead to the identification of candidate genes for pulmonary function that has not been reported earlier. Further mechanistic investigations are warranted to elucidate their mode of action in determining lung function.


Assuntos
Perfilação da Expressão Gênica/métodos , Estudos de Associação Genética/métodos , Pulmão/fisiologia , Capacidade Pulmonar Total/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Testes de Função Respiratória/métodos , Especificidade da Espécie
13.
Lung ; 195(2): 263-270, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28220305

RESUMO

Superoxide dismutase 3, extracellular (SOD3) polymorphisms have been implicated in reduced pulmonary function development and altered risk for chronic obstructive pulmonary disease. We previously reported that gene-targeted Sod3-/- mice have impaired lung function and human SOD3 variants are associated with reduced pulmonary function in children. Reduced lung SOD3 levels were reported in mice with lower lung function with the greatest difference occurring during alveogenesis phase [postnatal (P) days 14-28]. Interactions between homeobox (HOX), wingless-type MMTV integration site member (WNT), and fibroblast growth factor (FGF) signaling govern complex developmental processes in several organs. A subset of HOX family members, HOXA5 and HOXB5, is expressed in the developing lung. Therefore, in this study we assessed the transcript expression of these family members and their downstream targets in Sod3-/- mice during alveogenesis (P14). In the lung of Sod3-/- mice, Hoxa5 and Hoxb5 increased. These transcription factors regulate WNT gene expression and were accompanied by increases in their downstream targets Wnt2 and Wnt5A, canonical and noncanonical WNT members, respectively. The WNT signaling target, lymphoid enhancer binding factor 1 (Lef1), also increased along with its downstream targets Fgf2, Fgf7, and Fgf10 in the lungs of Sod3-/- mice. Due to limited knowledge on the role of FGF2 in lung development, we further examined FGF2 protein and found increased levels in the bronchial and alveolar type II epithelial cells of Sod3-/- mice compared to age-matched controls. Thus, our findings suggest that deficient management of extracellular superoxide can lead to altered lung developmental signaling during alveogenesis in mice.


Assuntos
Fator 2 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Homeodomínio/genética , Alvéolos Pulmonares/crescimento & desenvolvimento , Superóxido Dismutase/genética , Via de Sinalização Wnt/genética , Animais , Proteína Axina/genética , Proteínas Desgrenhadas/genética , Células Epiteliais/metabolismo , Feminino , Fator 10 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Frizzled/genética , Regulação da Expressão Gênica , Fator 1 de Ligação ao Facilitador Linfoide/genética , Camundongos , Camundongos Knockout , Fosfoproteínas/genética , Superóxido Dismutase/deficiência , Superóxido Dismutase/metabolismo , Fatores de Transcrição , Transcrição Gênica , Proteína Wnt-5a/genética , Proteína Wnt2/genética
14.
Environ Health Perspect ; 124(8): 1199-207, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26955063

RESUMO

BACKGROUND: Fibrotic lung diseases occur predominantly in males, and reports describe better survival in affected females. Male mice are more sensitive to silica-induced lung fibrosis than silica-treated female mice. Secreted phosphoprotein 1 (SPP1, also known as osteopontin) increases in pulmonary fibrosis, and Spp1 transcription may be regulated by estrogen or estrogen receptor-related receptors. OBJECTIVE: We determined whether differences in silica-induced SPP1 levels contribute to sex differences in lung fibrosis. METHODS: Male and female mice were treated with 0.2 g/kg intratracheal silica, and lung injury was assessed 1, 3, or 14 days post-exposure. Gene-targeted (Spp1-/-) mice, control Spp1+/+ (C57BL/6J) mice, ovariectomized (OVX) female mice, and estrogen-treated male mice were treated with silica, and lung injury was assessed. RESULTS: Silica-induced SPP1 in lung tissue, bronchoalveolar lavage, and serum increased more in male than in female mice. Following silica treatment, bronchoalveolar lavage cell infiltrates decreased in female Spp1-/- mice compared with female Spp1+/+ mice, and lung hydroxyproline decreased in male Spp1-/- mice compared with male Spp1+/+ mice. OVX female mice had increased lung SPP1 expression in response to silica compared with silica-treated sham female mice. Silica-induced lung collagen and hydroxyproline (markers of fibrosis), and SPP1 levels decreased in estrogen-treated males compared with untreated males. CONCLUSION: These findings suggest that sex-specific differences in SPP1 levels contribute to the differential sensitivity of male and female mice to the development of silica-induced fibrosis. CITATION: Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD, Fattman CL. 2016. Secreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in mice. Environ Health Perspect 124:1199-1207; http://dx.doi.org/10.1289/ehp.1510335.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/análise , Osteopontina/metabolismo , Dióxido de Silício/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
16.
Nat Commun ; 6: 8472, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26442449

RESUMO

Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs.


Assuntos
Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Silicose/metabolismo , Animais , Arrestinas/metabolismo , Western Blotting , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/ultraestrutura , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , Microscopia Eletrônica , Fator 88 de Diferenciação Mieloide/genética , Estresse Oxidativo , Receptores Imunológicos/genética , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/genética , Receptores Toll-Like/metabolismo
18.
PLoS One ; 9(12): e115937, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25549252

RESUMO

Cyclic adenosine monophosphate (cAMP) is a crucial intracellular second messenger molecule that converts extracellular molecules to intracellular signal transduction pathways generating cell- and stimulus-specific effects. Importantly, specific phosphodiesterase (PDE) subtypes control the amplitude and duration of cAMP-induced physiological processes and are therefore a prominent pharmacological target currently used in a variety of fields. Here we tested the extracts from traditional Chinese medicine, Forsythia suspense seeds, which have been used for more than 2000 years to relieve respiratory symptoms. Using structural-functional analysis we found its major lignin, Forsynthin, acted as an immunosuppressant by inhibiting PDE4 in inflammatory and immune cell. Moreover, several novel, selective small molecule derivatives of Forsythin were tested in vitro and in murine models of viral and bacterial pneumonia, sepsis and cytokine-driven systemic inflammation. Thus, pharmacological targeting of PDE4 may be a promising strategy for immune-related disorders characterized by amplified host inflammatory response.


Assuntos
Forsythia/química , Lignina/farmacologia , Inibidores da Fosfodiesterase 4/isolamento & purificação , Animais , Simulação por Computador , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Inflamação/tratamento farmacológico , Lignina/isolamento & purificação , Lesão Pulmonar/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Plantas Medicinais/química , Choque Séptico/tratamento farmacológico , Relação Estrutura-Atividade
19.
Am J Respir Cell Mol Biol ; 51(5): 637-51, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24816281

RESUMO

Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14-P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1((-/-)) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1((+/+)) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1((-/-)) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1((-/-)) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Osteopontina/genética , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/fisiologia , Doença Pulmonar Obstrutiva Crônica/genética , Células Epiteliais Alveolares/fisiologia , Animais , Animais Recém-Nascidos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Complacência Pulmonar/genética , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Alvéolos Pulmonares/citologia , Receptor Notch1/genética
20.
J Immunol ; 192(8): 3837-46, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24623132

RESUMO

Macrophages play a fundamental role in innate immunity and the pathogenesis of silicosis. Phagocytosis of silica particles is associated with the generation of reactive oxygen species (ROS), secretion of cytokines, such as TNF, and cell death that contribute to silica-induced lung disease. In macrophages, ROS production is executed primarily by activation of the NADPH oxidase (Phox) and by generation of mitochondrial ROS (mtROS); however, the relative contribution is unclear, and the effects on macrophage function and fate are unknown. In this study, we used primary human and mouse macrophages (C57BL/6, BALB/c, and p47(phox-/-)) and macrophage cell lines (RAW 264.7 and IC21) to investigate the contribution of Phox and mtROS to silica-induced lung injury. We demonstrate that reduced p47(phox) expression in IC21 macrophages is linked to enhanced mtROS generation, cardiolipin oxidation, and accumulation of cardiolipin hydrolysis products, culminating in cell death. mtROS production is also observed in p47(phox-/-) macrophages, and p47(phox-/-) mice exhibit increased inflammation and fibrosis in the lung following silica exposure. Silica induces interaction between TNFR1 and Phox in RAW 264.7 macrophages. Moreover, TNFR1 expression in mitochondria decreased mtROS production and increased RAW 264.7 macrophage survival to silica. These results identify TNFR1/Phox interaction as a key event in the pathogenesis of silicosis that prevents mtROS formation and reduces macrophage apoptosis.


Assuntos
Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Silicose/metabolismo , Animais , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , Ligação Proteica , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/efeitos adversos , Dióxido de Silício/metabolismo , Silicose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...