Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(8): 114516, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024103

RESUMO

Despite its significance, the role of lipid metabolism in NLRP3 inflammasome remains elusive. Here, we reveal a critical role for fatty acid synthase (FASN) in NLRP3 inflammasome activation. We demonstrate that pharmacological or genetic depletion of FASN dampens NLRP3 activation in primary mouse and human macrophages and in mice. This disruption in NLRP3 activation is contingent upon FASN activity. Accordingly, abolishing cellular palmitoylation, a post-translational modification in which the FASN product palmitate is reversibly conjugated to cysteine residues of target proteins, blunts inflammasome signaling. Correspondingly, an acyl-biotin exchange assay corroborated NLRP3 palmitoylation. Mechanistically, Toll-like receptor (TLR) ligation introduces palmitoylation at NLRP3 Cys898, permitting NLRP3 translocation to dispersed trans-Golgi network (dTGN) vesicles, the site of inflammasome assembly, upon NLRP3 activation. Accordingly, the NLRP3 Cys898 mutant exhibits reduced palmitoylation, limited translocation to the dTGN compartment, and diminished inflammasome activation. These results underscore mechanistic insights through which lipid metabolism licenses NLRP3 inflammasome assembly and activation.

2.
STAR Protoc ; 5(2): 103054, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38704832

RESUMO

Palmitoylation is a post-translational lipid modification in which palmitic acid is conjugated predominantly to cysteine residues of target proteins, allowing them to tether to cell membranes. Here, we describe a protocol to perform a stepwise acyl biotin exchange assay to identify protein S-palmitoylation. We describe steps for initial blocking of free thiols in protein lysates, subsequent replacement of thioester-linked palmitate groups with a biotin tag for affinity enrichment, and identification of palmitoylated proteins by SDS-PAGE. For complete details on the use and execution of this protocol, please refer to Leishman et al.1.


Assuntos
Biotina , Lipoilação , Biotina/química , Biotina/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Células Cultivadas , Eletroforese em Gel de Poliacrilamida/métodos
3.
Trends Immunol ; 43(12): 978-989, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371361

RESUMO

Macrophages undergo profound metabolic reprogramming upon sensing infectious and sterile stimuli. This metabolic shift supports and regulates essential innate immune functions, including activation of the NLRP3 inflammasome. Within distinct metabolic networks, key enzymes play pivotal roles to control flux restraining detrimental inflammasome signaling. However, depending on the metabolic cues, specific enzymes and metabolites result in inflammasome activation outcomes which contrast other metabolic steps in the pathway. We posit that understanding which metabolic steps commit to discrete inflammasome fates will broaden our understanding of metabolic checkpoints to maintain homeostasis and offer better therapeutic options in human disease.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos , Transdução de Sinais , Redes e Vias Metabólicas
4.
Immunohorizons ; 6(8): 642-659, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038196

RESUMO

Imbalance in lipid homeostasis is associated with discrepancies in immune signaling and is tightly linked to metabolic disorders. The diverse ways in which lipids impact immune signaling, however, remain ambiguous. The phospholipid phosphatidylinositol (PI), which is implicated in numerous immune disorders, is chiefly defined by its phosphorylation status. By contrast, the significance of the two fatty acid chains attached to the PI remains unknown. In this study, by using a mass spectrometry-based assay, we demonstrate a role for PI acyl group chains in regulating both the priming and activation steps of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in mouse macrophages. In response to NLRP3 stimuli, cells deficient in ABC transporter ATP Binding Cassette Subfamily B Member 1 (ABCB1), which effluxes lipid derivatives, revealed defective inflammasome activation. Mechanistically, Abcb1 deficiency shifted the total PI configuration exhibiting a reduced ratio of short-chain to long-chain PI acyl lipids. Consequently, Abcb1 deficiency initiated the rapid degradation of Toll/IL-1R domain-containing adaptor protein, the TLR adaptor protein that binds PI (4,5)-bisphosphate, resulting in defective TLR-dependent signaling, and thus NLRP3 expression. Moreover, this accompanied increased NLRP3 phosphorylation at the Ser291 position and contributed to blunted inflammasome activation. Exogenously supplementing wild-type cells with linoleic acid (LA), but not arachidonic acid, reconfigured PI acyl chains. Accordingly, LA supplementation increased Toll/IL-1R domain-containing adaptor protein degradation, elevated NLRP3 phosphorylation, and abrogated inflammasome activation. Furthermore, NLRP3 Ser291 phosphorylation was dependent on PGE2-induced protein kinase A signaling because pharmacological inhibition of this pathway in LA-enriched cells dephosphorylated NLRP3. Altogether, our study reveals, to our knowledge, a novel metabolic-inflammatory circuit that contributes to calibrating immune responses.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Adaptadoras de Transdução de Sinal , Animais , Inflamassomos/metabolismo , Macrófagos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...