Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 252: 121178, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309063

RESUMO

As COVID-19 becomes endemic, public health departments benefit from improved passive indicators, which are independent of voluntary testing data, to estimate the prevalence of COVID-19 in local communities. Quantification of SARS-CoV-2 RNA from wastewater has the potential to be a powerful passive indicator. However, connecting measured SARS-CoV-2 RNA to community prevalence is challenging due to the high noise typical of environmental samples. We have developed a generalized pipeline using in- and out-of-sample model selection to test the ability of different correction models to reduce the variance in wastewater measurements and applied it to data collected from treatment plants in the Chicago area. We built and compared a set of multi-linear regression models, which incorporate pepper mild mottle virus (PMMoV) as a population biomarker, Bovine coronavirus (BCoV) as a recovery control, and wastewater system flow rate into a corrected estimate for SARS-CoV-2 RNA concentration. For our data, models with BCoV performed better than those with PMMoV, but the pipeline should be used to reevaluate any new data set as the sources of variance may change across locations, lab methods, and disease states. Using our best-fit model, we investigated the utility of RNA measurements in wastewater as a leading indicator of COVID-19 trends. We did this in a rolling manner for corrected wastewater data and for other prevalence indicators and statistically compared the temporal relationship between new increases in the wastewater data and those in other prevalence indicators. We found that wastewater trends often lead other COVID-19 indicators in predicting new surges.


Assuntos
COVID-19 , Saúde Pública , SARS-CoV-2 , Tobamovirus , Animais , Bovinos , COVID-19/epidemiologia , RNA Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
Sci Total Environ ; 912: 169551, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135071

RESUMO

Influenza is a respiratory illness that can result in serious outcomes, particularly among persons who are immunocompromised, aged <5 years or aged >65 years. Traditional influenza surveillance approaches rely upon syndromic surveillance of emergency departments and public health reporting from clinicians and laboratories. Wastewater surveillance infrastructure developed to monitor SARS-CoV-2 is being used for influenza surveillance in the Chicago area. The goal was to evaluate timeliness and correlations between influenza virus detected through wastewater surveillance and traditional influenza surveillance measures to assess utility of wastewater surveillance for influenza at the county level. Specifically, we measured correlations between influenza virus gene copies in wastewater samples and 1) the number of intensive care unit admissions associated with a diagnosis of influenza, 2) the percentage emergency department (ED) visits for influenza-like-illness, and 3) the percentage of ED visits with influenza diagnosis at discharge2 in Cook County. Influenza concentrations in wastewater were strongly correlated with traditional influenza surveillance measures, particularly for catchment areas serving >100,000 residents. Wastewater indicators lagged traditional influenza surveillance measures by approximately one week when analyzed in cross-correlations. Although wastewater data lagged traditional influenza surveillance measures in this analysis, it can serve as a useful surveillance tool as a complement to syndromic surveillance; it is a form of influenza surveillance that does not rely on healthcare-seeking behavior or reporting by healthcare providers.


Assuntos
Influenza Humana , Humanos , Influenza Humana/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Illinois/epidemiologia , Vigilância de Evento Sentinela
3.
Phys Rev E ; 100(2-1): 022215, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574653

RESUMO

For waves described by the focusing nonlinear Schrödinger equation (FNLS), we present an effective dispersion relation (EDR) that arises dynamically from the interplay between the linear dispersion and the nonlinearity. The form of this EDR is parabolic for a robust family of "generic" FNLS waves and equals the linear dispersion relation less twice the total wave action of the wave in question multiplied by the square of the nonlinearity parameter. We derive an approximate form of this EDR explicitly in the limit of small nonlinearity and confirm it using the wave-number-frequency spectral (WFS) analysis, a Fourier-transform based method used for determining dispersion relations of observed waves. We also show that it extends to the FNLS the universal EDR formula for the defocusing Majda-McLaughlin-Tabak (MMT) model of weak turbulence. In addition, unexpectedly, even for some spatially periodic versions of multisolitonlike waves, the EDR is still a downward shifted linear-dispersion parabola, but the shift does not have a clear relation to the total wave action. Using WFS analysis and heuristic derivations, we present examples of parabolic and nonparabolic EDRs for FNLS waves and also waves for which no EDR exists.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...