Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(4): 042501, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576685

RESUMO

We report high-precision mass measurements of ^{50-55}Sc isotopes performed at the LEBIT facility at NSCL and at the TITAN facility at TRIUMF. Our results provide a substantial reduction of their uncertainties and indicate significant deviations, up to 0.7 MeV, from the previously recommended mass values for ^{53-55}Sc. The results of this work provide an important update to the description of emerging closed-shell phenomena at neutron numbers N=32 and N=34 above proton-magic Z=20. In particular, they finally enable a complete and precise characterization of the trends in ground state binding energies along the N=32 isotone, confirming that the empirical neutron shell gap energies peak at the doubly magic ^{52}Ca. Moreover, our data, combined with other recent measurements, do not support the existence of a closed neutron shell in ^{55}Sc at N=34. The results were compared to predictions from both ab initio and phenomenological nuclear theories, which all had success describing N=32 neutron shell gap energies but were highly disparate in the description of the N=34 isotone.

2.
Rev Sci Instrum ; 91(5): 053301, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486736

RESUMO

This work describes the new facility for applied nuclear physics at the University of Sao Paulo, mainly for irradiation of electronic devices. It is a setup composed of a quadrupole doublet for beam focusing/defocusing plus multiple scattering through gold foils to produce low intensity, large-area, and high-uniformity heavy-ion beams from 1H to 107Ag. Beam intensities can be easily adjusted from 102 particles cm2/s to hundreds of nA for an area as large as 2.0 cm2 and uniformity better than 90%. Its irradiation chamber has a high-precision motorized stage, and the system is controlled by a LabViewTM environment, allowing measurement automation. Design considerations and examples of use are presented.

3.
Phys Rev Lett ; 120(6): 062503, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481255

RESUMO

A precision mass investigation of the neutron-rich titanium isotopes ^{51-55}Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N=32 shell closure, and the overall uncertainties of the ^{52-55}Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N=32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N=32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...