Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 82(11): 1474-1486, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37479494

RESUMO

OBJECTIVES: Activation of fibroblasts is a hallmark of fibrotic processes. Besides cytokines and growth factors, fibroblasts are regulated by the extracellular matrix environment through receptors such as integrins, which transduce biochemical and mechanical signals enabling cells to mount appropriate responses according to biological demands. The aim of this work was to investigate the in vivo role of collagen-fibroblast interactions for regulating fibroblast functions and fibrosis. METHODS: Triple knockout (tKO) mice with a combined ablation of integrins α1ß1, α2ß1 and α11ß1 were created to address the significance of integrin-mediated cell-collagen communication. Properties of primary dermal fibroblasts lacking collagen-binding integrins were delineated in vitro. Response of the tKO mice skin to bleomycin induced fibrotic challenge was assessed. RESULTS: Triple integrin-deficient mice develop normally, are transiently smaller and reveal mild alterations in mechanoresilience of the skin. Fibroblasts from these mice in culture show defects in cytoskeletal architecture, traction stress generation, matrix production and organisation. Ablation of the three integrins leads to increased levels of discoidin domain receptor 2, an alternative receptor recognising collagens in vivo and in vitro. However, this overexpression fails to compensate adhesion and spreading defects on collagen substrates in vitro. Mice lacking collagen-binding integrins show a severely attenuated fibrotic response with impaired mechanotransduction, reduced collagen production and matrix organisation. CONCLUSIONS: The data provide evidence for a crucial role of collagen-binding integrins in fibroblast force generation and differentiation in vitro and for matrix deposition and tissue remodelling in vivo. Targeting fibroblast-collagen interactions might represent a promising therapeutic approach to regulate connective tissue deposition in fibrotic diseases.

2.
Front Cell Dev Biol ; 10: 836797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309920

RESUMO

Integrins and discoidin domain receptors (DDRs) 1 and 2 promote cell adhesion and migration on both fibrillar and non fibrillar collagens. Collagen I contains DDR and integrin selective binding motifs; however, the relative contribution of these two receptors in regulating cell migration is unclear. DDR1 has five isoforms (DDR1a-e), with most cells expressing the DDR1a and DDR1b isoforms. We show that human embryonic kidney 293 cells expressing DDR1b migrate more than DDR1a expressing cells on DDR selective substrata as well as on collagen I in vitro. In addition, DDR1b expressing cells show increased lung colonization after tail vein injection in nude mice. DDR1a and DDR1b differ from each other by an extra 37 amino acids in the DDR1b cytoplasmic domain. Interestingly, these 37 amino acids contain an NPxY motif which is a central control module within the cytoplasmic domain of ß integrins and acts by binding scaffold proteins, including talin. Using purified recombinant DDR1 cytoplasmic tail proteins, we show that DDR1b directly binds talin with higher affinity than DDR1a. In cells, DDR1b, but not DDR1a, colocalizes with talin and integrin ß1 to focal adhesions and enhances integrin ß1-mediated cell migration. Moreover, we show that DDR1b promotes cell migration by enhancing Rac1 activation. Mechanistically DDR1b interacts with the GTPase-activating protein (GAP) Breakpoint cluster region protein (BCR) thus reducing its GAP activity and enhancing Rac activation. Our study identifies DDR1b as a major driver of cell migration and talin and BCR as key players in the interplay between integrins and DDR1b in regulating cell migration.

3.
Nat Cancer ; 3(1): 9-10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121996
4.
Proc Natl Acad Sci U S A ; 117(36): 22051-22060, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839343

RESUMO

Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase with important functions in organogenesis and tissue homeostasis. Aberrant DDR1 activity contributes to the progression of human diseases, including fibrosis and cancer. How DDR1 activity is regulated is poorly understood. We investigated the function of the long intracellular juxtamembrane (JM) region of human DDR1 and found that the kinase-proximal segment, JM4, is an important regulator of kinase activity. Crystal structure analysis revealed that JM4 forms a hairpin that penetrates the kinase active site, reinforcing autoinhibition by the activation loop. Using in vitro enzymology with soluble kinase constructs, we established that release from autoinhibition occurs in two distinct steps: rapid autophosphorylation of the JM4 tyrosines, Tyr569 and Tyr586, followed by slower autophosphorylation of activation loop tyrosines. Mutation of JM4 tyrosines abolished collagen-induced DDR1 activation in cells. The insights may be used to develop allosteric, DDR1-specific, kinase inhibitors.


Assuntos
Receptor com Domínio Discoidina 1/química , Receptor com Domínio Discoidina 1/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Colágeno/metabolismo , Receptor com Domínio Discoidina 1/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Fosforilação , Domínios Proteicos
5.
J Cell Sci ; 133(4)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094286

RESUMO

For the first time, a meeting dedicated to the tyrosine kinase receptors DDR1 and DDR2 took place in Bordeaux, a famous and historical city in the south of France. Over the course of 3 days, the meeting allowed 60 participants from 11 different countries to exchange ideas and their new findings about these unique collagen receptors, focusing on their role in various physiological and pathological conditions and addressing their mechanisms of regulation and signalling. The involvement of these receptors in different pathologies was also considered, with emphasis on cancer development and potential therapeutic applications. Here, we summarize the key elements of this meeting.


Assuntos
Receptores Proteína Tirosina Quinases , Receptores Mitogênicos , Receptores com Domínio Discoidina , França , Humanos , Receptores Proteína Tirosina Quinases/genética , Receptores de Colágeno , Receptores Mitogênicos/genética
6.
Nat Chem Biol ; 16(4): 423-429, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907373

RESUMO

The most abundant member of the collagen protein family, collagen I (also known as type I collagen; COL1), is composed of one unique (chain B) and two similar (chain A) polypeptides that self-assemble with one amino acid offset into a heterotrimeric triple helix. Given the offset, chain B can occupy either the leading (BAA), middle (ABA) or trailing (AAB) position of the triple helix, yielding three isomeric biomacromolecules with different protein recognition properties. Despite five decades of intensive research, there is no consensus on the position of chain B in COL1. Here, three triple-helical heterotrimers that each contain a putative von Willebrand factor (VWF) and discoidin domain receptor (DDR) recognition sequence from COL1 were designed with chain B permutated in all three positions. AAB demonstrated a strong preference for both VWF and DDR, and also induced higher levels of cellular DDR phosphorylation. Thus, we resolve this long-standing mystery and show that COL1 adopts an AAB register.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Colágeno/química , Sequência de Aminoácidos , Aminoácidos , Colágeno/metabolismo , Biologia Computacional/métodos , Humanos , Modelos Moleculares , Peptídeos/química , Conformação Proteica
7.
Sci Rep ; 9(1): 17104, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745115

RESUMO

The collagen receptor DDR1 is a receptor tyrosine kinase that promotes progression of a wide range of human disorders. Little is known about how ligand binding triggers DDR1 kinase activity. We previously reported that collagen induces DDR1 activation through lateral dimer association and phosphorylation between dimers, a process that requires specific transmembrane association. Here we demonstrate ligand-induced DDR1 clustering by widefield and super-resolution imaging and provide evidence for a mechanism whereby DDR1 kinase activity is determined by its molecular density. Ligand binding resulted in initial DDR1 reorganisation into morphologically distinct clusters with unphosphorylated DDR1. Further compaction over time led to clusters with highly aggregated and phosphorylated DDR1. Ligand-induced DDR1 clustering was abolished by transmembrane mutations but did not require kinase activity. Our results significantly advance our understanding of the molecular events underpinning ligand-induced DDR1 kinase activity and provide an explanation for the unusually slow DDR1 activation kinetics.


Assuntos
Colágeno/metabolismo , Receptor com Domínio Discoidina 1/química , Receptor com Domínio Discoidina 1/metabolismo , Multimerização Proteica , Colágeno/química , Receptor com Domínio Discoidina 1/genética , Células HEK293 , Humanos , Mutação , Fosforilação
8.
Cell Rep ; 26(13): 3672-3683.e7, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917320

RESUMO

Glioblastoma (GBM) is highly refractory to therapy and associated with poor clinical outcome. Here, we reveal a critical function of the promitotic and adhesion-mediating discoidin domain receptor 1 (DDR1) in modulating GBM therapy resistance. In GBM cultures and clinical samples, we show a DDR1 and GBM stem cell marker co-expression that correlates with patient outcome. We demonstrate that inhibition of DDR1 in combination with radiochemotherapy with temozolomide in GBM models enhances sensitivity and prolongs survival superior to conventional therapy. We identify a 14-3-3-Beclin-1-Akt1 protein complex assembling with DDR1 to be required for prosurvival Akt and mTOR signaling and regulation of autophagy-associated therapy sensitivity. Our results uncover a mechanism driven by DDR1 that controls GBM therapy resistance and provide a rationale target for the development of therapy-sensitizing agents.


Assuntos
Proteínas 14-3-3/metabolismo , Proteína Beclina-1/metabolismo , Neoplasias Encefálicas/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Glioblastoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Linhagem Celular , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Masculino , Camundongos , Camundongos Nus , Prognóstico , Tolerância a Radiação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
Bio Protoc ; 9(16): e3339, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654844

RESUMO

The discoidin domain receptors, DDR1 and DDR2, are key signaling receptors for the extracellular matrix protein collagen. The interactions of cells with collagen are difficult to study because of the difficulty to obtain native collagen fibers for in vitro studies. Thus, in vitro studies often use acid-soluble collagens in the form of single triple helices, which are not representative of the densely packed insoluble collagen fibers found in tissues. In this protocol, we describe a method that allows stimulating DDR1 locally with collagen-coated beads. Latex beads are first coated with acid-soluble collagen, then added to cells expressing DDR1. Recruitment of DDR1 to the beads and collagen-induced DDR1 phosphorylation is visualized by immunofluorescence microscopy on a widefield microscope. In this method, densely packed collagen is presented to cells in an insoluble form. Bead coating is easy to perform, and this method thus presents a straightforward protocol with which to study local recruitment of collagen receptors to insoluble collagen.

10.
Biomaterials ; 182: 21-34, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30099278

RESUMO

Collagen-based scaffolds may require chemical crosslinking to achieve mechanical properties suitable for tissue engineering. Carbodiimide treatment, often used for this purpose, consumes amino acid side chains required for receptor recognition, thus reducing cell-collagen interaction. Here, we restore recognition and function of both von Willebrand Factor (VWF) and Discoidin Domain Receptor 2 (DDR2) to crosslinked collagen films by derivatisation with a specific triple-helical peptide (THP), an approach previously applied to integrin-mediated cellular adhesion. The THP contained the collagen III-derived active sequence, GPRGQOGVNleGFO, conjugated to a photoreactive moiety, diazirine, allowing UV-dependent covalent coupling to collagen films. Crosslinking of collagen films attenuated the binding of recombinant VWF A3 domain and of DDR2 (as the GST and Fc fusions, respectively), and coupling of the specific THP restored their attachment. These derivatised films supported activation of DDR2 expressed in either COS-7 or HEK293 cells, reflected by phosphorylation of tyrosine 740, and VWF-mediated platelet deposition from flowing blood was restored. Further, such films were able to increase low-density lipoprotein uptake in vascular endothelial cells, a marker for endothelial phenotype. Thus, covalent linkage of specific THPs to crosslinked collagen films i) restores their cognate protein binding, ii) triggers the corresponding cellular responses, and iii) demonstrates the broad applicability of the approach to a range of receptors for applications in regenerative medicine.


Assuntos
Materiais Biocompatíveis/metabolismo , Colágeno/metabolismo , Receptor com Domínio Discoidina 2/metabolismo , Peptídeos/metabolismo , Fator de von Willebrand/metabolismo , Animais , Materiais Biocompatíveis/química , Células COS , Chlorocebus aethiops , Colágeno/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Receptor com Domínio Discoidina 2/agonistas , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Peptídeos/química , Ligação Proteica , Alicerces Teciduais/química , Fator de von Willebrand/agonistas
12.
J Cell Biol ; 217(1): 195-209, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29133484

RESUMO

Centrosome amplification is a common feature of human tumors. To survive, cancer cells cluster extra centrosomes during mitosis, avoiding the detrimental effects of multipolar divisions. However, it is unclear whether clustering requires adaptation or is inherent to all cells. Here, we show that cells have varied abilities to cluster extra centrosomes. Epithelial cells are innately inefficient at clustering even in the presence of HSET/KIFC1, which is essential but not sufficient to promote clustering. The presence of E-cadherin decreases cortical contractility during mitosis through a signaling cascade leading to multipolar divisions, and its knockout promotes clustering and survival of cells with multiple centrosomes. Cortical contractility restricts centrosome movement at a minimal distance required for HSET/KIFC1 to exert its function, highlighting a biphasic model for centrosome clustering. In breast cancer cell lines, increased levels of centrosome amplification are accompanied by efficient clustering and loss of E-cadherin, indicating that this is an important adaptation mechanism to centrosome amplification in cancer.


Assuntos
Neoplasias da Mama/patologia , Caderinas/genética , Centrossomo/metabolismo , Receptor com Domínio Discoidina 1/genética , Células Epiteliais/patologia , Comunicação Celular/genética , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Cinesinas/metabolismo , Mitose/genética
13.
Elife ; 62017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28590245

RESUMO

The collagen-binding receptor tyrosine kinase DDR1 (discoidin domain receptor 1) is a drug target for a wide range of human diseases, but the molecular mechanism of DDR1 activation is poorly defined. Here we co-expressed different types of signalling-incompetent DDR1 mutants ('receiver') with functional DDR1 ('donor') and demonstrate phosphorylation of receiver DDR1 by donor DDR1 in response to collagen. Making use of enforced covalent DDR1 dimerisation, which does not affect receptor function, we show that receiver dimers are phosphorylated in trans by the donor; this process requires the kinase activity of the donor but not that of the receiver. The receiver ectodomain is not required, but phosphorylation in trans is abolished by mutation of the transmembrane domain. Finally, we show that mutant DDR1 that cannot bind collagen is recruited into DDR1 signalling clusters. Our results support an activation mechanism whereby collagen induces lateral association of DDR1 dimers and phosphorylation between dimers.


Assuntos
Colágeno/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Linhagem Celular , Humanos , Fosforilação
14.
Matrix Biol ; 63: 91-105, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28192200

RESUMO

Interactions of cells with supramolecular aggregates of the extracellular matrix (ECM) are mediated, in part, by cell surface receptors of the integrin family. These are important molecular components of cell surface-suprastructures regulating cellular activities in general. A subfamily of ß1-integrins with von Willebrand-factor A-like domains (I-domains) in their α-chains can bind to collagen molecules and, therefore, are considered as important cellular mechano-receptors. Here we show that chondrocytes strongly bind to cartilage collagens in the form of individual triple helical molecules but very weakly to fibrils formed by the same molecules. We also find that chondrocyte integrins α1ß1-, α2ß1- and α10ß1-integrins and their I-domains have the same characteristics. Nevertheless we find integrin binding to mechanically generated cartilage fibril fragments, which also comprise peripheral non-collagenous material. We conclude that cell adhesion results from binding of integrin-containing adhesion suprastructures to the non-collagenous fibril periphery but not to the collagenous fibril cores. The biological importance of the well-investigated recognition of collagen molecules by integrins is unknown. Possible scenarios may include fibrillogenesis, fibril degradation and/or phagocytosis, recruitment of cells to remodeling sites, or molecular signaling across cytoplasmic membranes. In these circumstances, collagen molecules may lack a fibrillar organization. However, other processes requiring robust biomechanical functions, such as fibril organization in tissues, cell division, adhesion, or migration, do not involve direct integrin-collagen interactions.


Assuntos
Condrócitos/fisiologia , Colágenos Fibrilares/química , Cadeias alfa de Integrinas/química , Integrina alfa1beta1/química , Integrina alfa2beta1/química , Animais , Cartilagem Articular/citologia , Bovinos , Adesão Celular , Células Cultivadas , Embrião de Galinha , Receptores com Domínio Discoidina/fisiologia , Colágenos Fibrilares/fisiologia , Humanos , Proteínas Imobilizadas/química , Cadeias alfa de Integrinas/fisiologia , Integrina alfa1beta1/fisiologia , Integrina alfa2beta1/fisiologia , Ligação Proteica
15.
Matrix Biol ; 57-58: 258-271, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27915093

RESUMO

Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagens. DDR1 expression increases following kidney injury and accumulating evidence suggests that it contributes to the progression of injury. To this end, deletion of DDR1 is beneficial in ameliorating kidney injury induced by angiotensin infusion, unilateral ureteral obstruction, or nephrotoxic nephritis. Most of the beneficial effects observed in the DDR1-null mice are attributed to reduced inflammatory cell infiltration to the site of injury, suggesting that DDR1 plays a pro-inflammatory effect. The goal of this study was to determine whether, in addition to its pro-inflammatory effect, DDR1 plays a deleterious effect in kidney injury by directly regulating extracellular matrix production. We show that DDR1-null mice have reduced deposition of glomerular collagens I and IV as well as decreased proteinuria following the partial renal ablation model of kidney injury. Using mesangial cells isolated from DDR1-null mice, we show that these cells produce significantly less collagen compared to DDR1-null cells reconstituted with wild type DDR1. Moreover, mutagenesis analysis revealed that mutations in the collagen binding site or in the kinase domain significantly reduce DDR1-mediated collagen production. Finally, we provide evidence that blocking DDR1 kinase activity with an ATP-competitive small molecule inhibitor reduces collagen production. In conclusion, our studies indicate that the kinase activity of DDR1 plays a key role in DDR1-induced collagen synthesis and suggest that blocking collagen-mediated DDR1 activation may be beneficial in fibrotic diseases.


Assuntos
Injúria Renal Aguda/genética , Colágeno Tipo IV/genética , Receptor com Domínio Discoidina 1/genética , Glomérulos Renais/metabolismo , Nefrite/genética , Obstrução Ureteral/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/cirurgia , Angiotensinas , Animais , Sítios de Ligação , Colágeno Tipo IV/metabolismo , Receptor com Domínio Discoidina 1/deficiência , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Knockout , Nefrectomia , Nefrite/induzido quimicamente , Nefrite/metabolismo , Nefrite/patologia , Ligação Proteica , Transdução de Sinais , Ureter/cirurgia , Obstrução Ureteral/patologia , Obstrução Ureteral/cirurgia
16.
Cell ; 166(1): 47-62, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27368100

RESUMO

Genetic screening identifies the atypical tetraspanin TM4SF1 as a strong mediator of metastatic reactivation of breast cancer. Intriguingly, TM4SF1 couples the collagen receptor tyrosine kinase DDR1 to the cortical adaptor syntenin 2 and, hence, to PKCα. The latter kinase phosphorylates and activates JAK2, leading to the activation of STAT3. This non-canonical mechanism of signaling induces the expression of SOX2 and NANOG; sustains the manifestation of cancer stem cell traits; and drives metastatic reactivation in the lung, bone, and brain. Bioinformatic analyses and pathological studies corroborate the clinical relevance of these findings. We conclude that non-canonical DDR1 signaling enables breast cancer cells to exploit the ubiquitous interstitial matrix component collagen I to undergo metastatic reactivation in multiple target organs.


Assuntos
Neoplasias da Mama/patologia , Receptor com Domínio Discoidina 1/metabolismo , Metástase Neoplásica , Transdução de Sinais , Animais , Antígenos de Superfície/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor com Domínio Discoidina 1/química , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia
17.
Adv Drug Deliv Rev ; 97: 28-40, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519775

RESUMO

Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-ß. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression.


Assuntos
Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Proteoglicanas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
18.
J Biol Chem ; 291(9): 4343-55, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26702058

RESUMO

A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.


Assuntos
Proteínas de Bactérias/metabolismo , Colágeno Tipo III/metabolismo , Colágeno/metabolismo , Megacariócitos/metabolismo , Modelos Moleculares , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Movimento Celular , Células Cultivadas , Colágeno/química , Colágeno/genética , Colágeno Tipo III/química , Colágeno Tipo III/genética , Receptores com Domínio Discoidina , Sangue Fetal/citologia , Células HEK293 , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/metabolismo , Ligantes , Megacariócitos/citologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/química , Receptores Mitogênicos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptococcus pyogenes
19.
Mol Biol Cell ; 26(4): 659-73, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25540428

RESUMO

Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and transmits signals from various collagens in epithelial cells. However, how DDR1-dependent signaling is regulated has not been understood. Here we report that collagen binding induces ADAM10-dependent ectodomain shedding of DDR1. DDR1 shedding is not a result of an activation of its signaling pathway, since DDR1 mutants defective in signaling were shed in an efficient manner. DDR1 and ADAM10 were found to be in a complex on the cell surface, but shedding did not occur unless collagen bound to DDR1. Using a shedding-resistant DDR1 mutant, we found that ADAM10-dependent DDR1 shedding regulates the half-life of collagen-induced phosphorylation of the receptor. Our data also revealed that ADAM10 plays an important role in regulating DDR1-mediated cell adhesion to achieve efficient cell migration on collagen matrices.


Assuntos
Proteínas ADAM/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Movimento Celular , Colágeno/metabolismo , Proteínas de Membrana/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Adesão Celular , Receptor com Domínio Discoidina 1 , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína
20.
J Cell Biol ; 207(4): 517-33, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25422375

RESUMO

Accumulation of type I collagen fibrils in tumors is associated with an increased risk of metastasis. Invadosomes are F-actin structures able to degrade the extracellular matrix. We previously found that collagen I fibrils induced the formation of peculiar linear invadosomes in an unexpected integrin-independent manner. Here, we show that Discoidin Domain Receptor 1 (DDR1), a collagen receptor overexpressed in cancer, colocalizes with linear invadosomes in tumor cells and is required for their formation and matrix degradation ability. Unexpectedly, DDR1 kinase activity is not required for invadosome formation or activity, nor is Src tyrosine kinase. We show that the RhoGTPase Cdc42 is activated on collagen in a DDR1-dependent manner. Cdc42 and its specific guanine nucleotide-exchange factor (GEF), Tuba, localize to linear invadosomes, and both are required for linear invadosome formation. Finally, DDR1 depletion blocked cell invasion in a collagen gel. Altogether, our data uncover an important role for DDR1, acting through Tuba and Cdc42, in proteolysis-based cell invasion in a collagen-rich environment.


Assuntos
Colágeno Tipo I/metabolismo , Proteínas do Citoesqueleto/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina , Actinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Linhagem Celular Tumoral , Colagenases/metabolismo , Dipeptídeos/farmacologia , Receptor com Domínio Discoidina 1 , Matriz Extracelular/metabolismo , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Invasividade Neoplásica/genética , Interferência de RNA , RNA Interferente Pequeno , Receptores Proteína Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...