Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794634

RESUMO

High-molecular-weight anionic polyacrylamide was used to analyze the effect of kaolin on the structure of particle aggregates formed in freshwater and seawater. Batch flocculation experiments were performed to determine the size of the flocculated aggregates over time by using focused beam reflectance measurements. Sedimentation tests were performed to analyze the settling rate of the solid-liquid interface and the turbidity of the supernatant. Subsequently, a model that relates the hindered settling rate to the aggregate size was used to determine the mass fractal dimension (Df). Flocculation kinetics revealed that greater amounts of kaolin generated larger aggregates because of its lamellar morphology. The maximum size was between 10 and 20 s of flocculation under all conditions. However, the presence of kaolin reduced the settling rate. The fractal dimension decreased with the increase in the kaolin content, resulting in the formation of irregular and porous aggregates. By contrast, factors such as the flocculation time, water quality, and quartz size had limited influences on the fractal dimension. Seawater produced a clearer supernatant because of its higher ionic strength and precoagulation of particles. Notably, the harmful effect of clays in seawater was reduced.

2.
Materials (Basel) ; 15(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36233879

RESUMO

In the present work an intense bibliographic search is developed, with updated information on the microscopic fundamentals that govern the behavior of flotation operations of chalcopyrite, the main copper mineral in nature. In particular, the effect caused by the presence of pyrite, a non-valuable mineral, but challenging for the operation due to its ability to capture a portion of collector and float, decreasing the quality of the concentrate, is addressed. This manuscript discusses the main chemical and physical mechanisms involved in the phenomena of reagent adsorption on the mineral surface, the impact of pH and type of alkalizing agent, and the effect of pyrite depressants, some already used in the industry and others under investigation. Modern collector reagents are also described, for which, although not yet implemented on an industrial scale, promising results have been obtained in the laboratory, including better copper recovery and selectivity, and even some green reagents present biodegradable properties that generate a better environmental perspective for mineral processing.

3.
Polymers (Basel) ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145996

RESUMO

The search for polymers that meet the demands of the water recovery process in mining is a contingent challenge. Both the presence of clays and saline waters can impair water recovery from tailings when conventional flocculants are used. In this work, the adsorption of polyacrylamide (PAM), hydrolyzed polyacrylamide (HPAM), poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS), polyacrylic acid (PAA), polyethylene oxide (PEO), and guar gum (GUAR) on a kaolinite surface (010) was investigated using classical molecular dynamics. The results show that the presence of sodium chloride modifies the affinities of the polymers with kaolinite (010). At low salt concentrations, the PAM and GUAR polymers generally show higher adsorption due to the formation of hydrogen bridges. However, the highest adsorptions occur in salt solutions in the presence of HPAM by cationic bridging with sodium ions as a mediator. This high affinity of HPAM is not efficient for flocculation because it re-disperses the particles, but it is promising for the design of new additives produced by grafting HPAM groups onto advanced polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...