Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037443

RESUMO

Ultra-small nanoparticles, including quantum dots, gold nanoclusters (AuNCs) and carbon dots (CDs), have emerged as a promising class of fluorescent material because of their molecular-like properties and widespread applications in sensing and imaging. However, the fluorescence properties of ultra-small gold nanoparticles (i.e., AuNCs) and CDs are more complicated and well distinguished from conventional quantum dots or organic dye molecules. At this frontier, we highlight recent developments in the fundamental understanding of the fluorescence emission mechanism of these ultra-small nanoparticles. Moreover, this review carefully analyses the underlying principles of ultra-small nanoparticle sensors. We expect that this information on ultra-small nanoparticles will fuel research aimed at achieving precise control over their fluorescence properties and the broadening of their applications.

2.
Anal Bioanal Chem ; 412(23): 5671-5681, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32627085

RESUMO

The direct detection of dopamine (DA) in human body fluids is a great challenge for medical diagnostics of neurological disorders like Parkinson's disease, Alzheimer's disease, senile dementia, and schizophrenia. In this work, a simple and turn off luminescence sensing of DA based on bovine serum albumin (BSA)-capped manganese-doped zinc sulphide quantum dots (Mn:ZnS/BSA QDs) is developed. The Mn:ZnS/BSA QDs were synthesized by a chemical co-precipitation method. Due to the special interaction of DA with BSA and metal ions, Mn:ZnS/BSA QDs can serve as an effective sensing platform for DA. The luminescence of Mn:ZnS/BSA QDs decreased linearly with increasing concentration of DA in the range from 6.6 to 50.6 nM. The limit of detection is 2.02 nM. The driving force for the luminescence quenching is partly provided by ground-state complex formation of QDs with DA. The photo-induced electron transfer from the conduction band of QDs to oxidized dopamine (quinone) also favors quenching. The Mn:ZnS/BSA QDs are barely interfered with by other competing biomolecules except catecholamine neurotransmitter like epinephrine. Moreover, this method is used in the analysis of DA-spiked human serum and human urine samples and good recovery percentages are found. To assess the utility of the developed sensor, paper strip assay was also successfully conducted. Graphical abstract.


Assuntos
Dopamina/química , Manganês/química , Pontos Quânticos/química , Soroalbumina Bovina/química , Sulfetos/química , Compostos de Zinco/química , Dopamina/sangue , Dopamina/urina , Humanos , Concentração de Íons de Hidrogênio , Luminescência , Papel , Análise Espectral/métodos
3.
Anal Bioanal Chem ; 411(5): 997-1007, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30637437

RESUMO

A fluorescent sensing platform using KI3-quenched bovine serum albumin stabilized gold nanoclusters has been designed and used as a fluorescent probe for the turn-on detection of homocysteine/cysteine (Cys/Hcy). The fluorescence of gold nanoclusters was quenched by iodine. The fluorescence of quenched gold nanoclusters was effectively switched on by Cys/Hcy devoid of the interference of glutathione. The transmission electron microscopy image, X-ray photoelectron spectroscopy analysis, time-correlated single photon counting analysis, and dynamic light scattering data confirmed the aggregation-induced quenching of fluorescence of gold nanoclusters by iodine. The turn-on response of Cys/Hcy shows two linear ranges from 0.0057 to 5 µM and from 8 to 25 µM, with a limit of detection of 9 nM for cysteine and 12 nM for homocysteine. Real samples were analyzed to monitor Cys/Hcy added to human serum. The fluorescence turn-on response of the probe on a paper strip in the presence of Cys/Hcy was studied. Graphical abstract ᅟ.


Assuntos
Cisteína/sangue , Corantes Fluorescentes/química , Ouro/química , Homocisteína/sangue , Iodetos/química , Nanopartículas Metálicas/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/ultraestrutura , Fitas Reagentes/análise , Espectrometria de Fluorescência/métodos
4.
Mikrochim Acta ; 185(1): 11, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29594591

RESUMO

Carbon dots doped with sulfur and nitrogen (S,N-CDs) were utilised to design a paper-stripe based fluorescent probe for the detection of bilirubin. The S,N-CDs were synthesized through a microwave assisted route by using citric acid as carbon source and L-cysteine as a source of nitrogen and sulfur. The S,N-CDs exhibit bright blue fluorescence emission with a peak at 452 nm. Fluorescence is quenched by Fe(III) but selectively restored by bilirubin. The quenched fluorescent probe exhibit significant selectivity and sensitivity for bilirubin in the 0.2 nM to 2 nM concentration range, with a 0.12 nM detection limit. The method was applied to the determination of bilirubin in spiked human serum and urine samples. The method was used to design a paper based test stripe as a point of care device for visual bilirubin detection. Graphical abstract Schematic representation of sulphur and nitrogen doped carbon dots whose fluorescence is quenched by Fe(III) and turned on by bilirubin. Photograph of the corresponding system under day light and UV shows the feasibility of the phenomenon. The applicability of the assay was further extended by impregnating the probe on a filter paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...