Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267340

RESUMO

To reduce the genome sequence representation, restriction site-associated DNA sequencing (RAD-seq) protocols is being widely used either with single-digest or double-digest methods. In this study, we genotyped the sesame population (48 sample size) in a pilot scale to compare single and double-digest RAD-seq (sd and ddRAD-seq) methods. We analysed the resulting short-read data generated from both protocols and assessed their performance impacting the downstream analysis using various parameters. The distinct k-mer count and gene presence absence variation (PAV) showed a significant difference between the sesame samples studied. Additionally, the variant calling from both datasets (sdRAD-seq and ddRAD-seq) exhibits a significant difference between them. The combined variants from both datasets helped in identifying the most diverse samples and possible sub-groups in the sesame population. The most diverse samples identified from each analysis (k-mer, gene PAV, SNP count, Heterozygosity, NJ and PCA) can possibly be representative samples holding major diversity of the small sesame population used in this study. The best possible strategies with suggested inputs for modifications to utilize the RAD-seq strategy efficiently on a large dataset containing thousands of samples to be subjected to molecular analysis like diversity, population structure and core development studies were discussed.


Assuntos
Sesamum , Sesamum/genética , Genoma , Genótipo , Análise de Sequência de DNA/métodos , Sequência de Bases
2.
J Biomol Struct Dyn ; 40(5): 2264-2283, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33107812

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for the current global pandemic that has caused a death toll of >1.12 million worldwide and number continues to climb in several countries. Currently, there are neither specific antiviral drugs nor vaccines for the treatment and prevention of COVID-19. We screened in silico, a group of natural spice and herbal secondary metabolites (SMs) for their inhibition efficacy against multiple target proteins of SARS-CoV-2 as well as the human angiotensin-converting enzyme 2 protein. Docking and simulation results indicated that epicatechin, embelin, hesperidin, cafestol, murrayanine and murrayaquinone-A have higher inhibition efficacy over at least one of the known antiviral drugs such as Hydroxychloroquine, Remdesivir and Ribavirin. Combination of these potentially effective SMs from their respective plant sources was analysed, and its absorption and acute oral toxicity were examined in Wistar rats and classified as category 5 as per the Globally Harmonized System. The identified SMs may be useful in the development of preventive nutraceuticals, food supplements and antiviral drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ratos , Ratos Wistar , Especiarias
3.
Physiol Plant ; 174(1): e13521, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34392545

RESUMO

Pearl millet (Pennisetum glaucum [L.] R. Br.) is an important crop capable of growing in harsh and marginal environments, with the highest degree of tolerance to drought and heat stresses among cereals. Diverse germplasm of pearl millet shows a significant phenotypic variation in response to abiotic stresses, making it a unique model to study the mechanisms responsible for stress mitigation. The present study focuses on identifying the physiological response of two pearl millet high-resolution cross (HRC) genotypes, ICMR 1122 and ICMR 1152, in response to low and high vapor pressure deficit (VPD). Under high VPD conditions, ICMR 1152 exhibited a lower transpiration rate (Tr), higher transpiration efficiency, and lower root sap exudation than ICMR 1122. Further, Pg-miRNAs expressed in the contrasting genotypes under low and high VPD conditions were identified by deep sequencing analysis. A total of 116 known and 61 novel Pg-miRNAs were identified from ICMR 1152, while 26 known and six novel Pg-miRNAs were identified from ICMR 1122 genotypes, respectively. While Pg-miR165, 168, 170, and 319 families exhibited significant differential expression under low and high VPD conditions in both genotypes, ICMR 1152 showed abundant expression of Pg-miR167, Pg-miR172, Pg-miR396 Pg-miR399, Pg-miR862, Pg-miR868, Pg-miR950, Pg-miR5054, and Pg-miR7527 indicating their direct and indirect role in root physiology and abiotic stress responses. Drought responsive Pg-miRNA targets showed upregulation in response to high VPD stress, further narrowing down the miRNAs involved in regulation of drought tolerance in pearl millet.


Assuntos
MicroRNAs , Pennisetum , Secas , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Plantas Geneticamente Modificadas/genética , Pressão de Vapor
4.
3 Biotech ; 9(11): 434, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31696039

RESUMO

Cultivation of the castor crop is hindered by various factors and one of the approaches for genetic improvement of the crop is through exploitation of biotechnological tools. Response of castor tissues to in vitro culture is poor which necessitated this study on understanding the molecular basis of organogenesis in cultured tissues of castor, through de novo transcriptome analysis and by comparing with jatropha and sunflower having good regeneration ability. Transcriptome profiling analysis was carried out with hypocotyl explants from castor, jatropha and cotyledons from sunflower cultured on MS media supplemented with different concentrations of hormones. Differentially expressed genes during dedifferentiation and organogenic differentiation stages of callus included components of auxin and cytokinin signaling, secondary metabolite synthesis, genes encoding transcription factors, receptor kinases and protein kinases. In castor, many genes involved in auxin biosynthesis and homeostasis like WAT1, vacuolar transporter genes, transcription factors like short root like protein were down-regulated while genes like DELLA were up-regulated accounting for regeneration recalcitrance. Validation of 62 DEGs through qRT-PCR showed a consensus of 77.4% of the genes expressed. Overall study provides set of genes involved in the process of organogenesis in three oilseed crops which forms a basis for understanding and improving the efficiency of plant regeneration and genetic transformation in castor.

5.
Front Plant Sci ; 10: 513, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134103

RESUMO

Purpleputtu (Oryza sativa ssp. indica cv. Purpleputtu) is a unique rice landrace from southern India that exhibits predominantly purple color. This study reports the underlying genetic complexity of the trait, associated domestication and de-domestication processes during its coevolution with present day cultivars. Along-with genome level allelic variations in the entire gene repertoire associated with the purple, red coloration of grain and other plant parts. Comparative genomic analysis using 'a panel of 108 rice lines' revealed a total of 3,200,951 variants including 67,774 unique variations in Purpleputtu (PP) genome. Multiple sequence alignment uncovered a 14 bp deletion in Rc (Red colored, a transcription factor of bHLH class) locus of PP, a key regulatory gene of anthocyanin biosynthetic pathway. Interestingly, this deletion in Rc gene is a characteristic feature of the present-day white pericarped rice cultivars. Phylogenetic analysis of Rc locus revealed a distinct clade showing proximity to the progenitor species Oryza rufipogon and O. nivara. In addition, PP genome exhibits a well conserved 4.5 Mbp region on chromosome 5 that harbors several loci associated with domestication of rice. Further, PP showed 1,387 unique when SNPs compared to 3,023 lines of rice (SNP-Seek database). The results indicate that PP genome is rich in allelic diversity and can serve as an excellent resource for rice breeding for a variety of agronomically important traits such as disease resistance, enhanced nutritional values, stress tolerance, and protection from harmful UV-B rays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...