Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1867(10): 130447, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619691

RESUMO

Nanotechnology has become a ubiquitous part of our everyday life. Besides the already-known nanoparticles (NPs), plenty of new nanomaterials are being synthesized every day. Here, we explain the mechanism of the zinc oxide nanoparticles (ZnONPs) cytotoxicity in a cellular model of acute lymphoblastic leukaemia (CCRF-CEM). To do so, we investigated both possible hypotheses about the ZnONPs mechanism of toxicity: a free zinc ions release and/or reactive oxygen species (ROS) generation. Presented here results show that: Our results support the hypothesis that the mechanism of ZnONPs cytotoxicity is based on the release of free zinc ions. Nevertheless, both previously quoted hypotheses incompletely described the mechanism of action of ZnONPs. In this paper, we show that the mechanism of cytotoxicity of ZnONPs is based on the induction of reductive stress in CCRF-CEM cells, which is caused by free zinc ions released from ZnONPs. Therefore, the increase of oxidative stress markers is most likely a secondary response of the cells towards the Zn2+. These results provide a crucial expansion of the zinc ion hypothesis and thus explain the biphasic cellular response of CCRF-CEM cells treated with ZnONPs.


Assuntos
Óxido de Zinco , Zinco , Zinco/toxicidade , Radicais Livres , Óxido de Zinco/toxicidade , Homeostase , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...