Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256116

RESUMO

We previously found that OsCUL3c is involved in the salt stress response. However, there are no definitive reports on the diversity of OsCUL3c in local Thai rice. In this study, we showed that the CUL3 group was clearly separated from the other CUL groups; next, we focused on OsCUL3c, the third CUL3 of the CUL3 family in rice, which is absent in Arabidopsis. A total of 111 SNPs and 28 indels over the OsCUL3c region, representing 79 haplotypes (haps), were found. Haplotyping revealed that group I (hap A and hap C) and group II (hap B1 and hap D) were different mutated variants, which showed their association with phenotypes under salt stress. These results were supported by cis-regulatory elements (CREs) and transcription factor binding sites (TFBSs) analyses. We found that LTR, MYC, [AP2; ERF], and NF-YB, which are related to salt stress, drought stress, and the response to abscisic acid (ABA), have distinct positions and numbers in the haplotypes of group I and group II. An RNA Seq analysis of the two predominant haplotypes from each group showed that the OsCUL3c expression of the group I representative was upregulated and that of group II was downregulated, which was confirmed by RT-qPCR. Promoter changes might affect the transcriptional responses to salt stress, leading to different regulatory mechanisms for the expression of different haplotypes. We speculate that OsCUL3c influences the regulation of salt-related responses, and haplotype variations play a role in this regulation.


Assuntos
Arabidopsis , Oryza , Oryza/genética , Haplótipos , Tailândia , Estresse Salino , Ácido Abscísico
2.
Genes (Basel) ; 10(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349693

RESUMO

Unfavourable environmental conditions, including soil salinity, lead to decreased rice (Oryza sativa L.) productivity, especially at the reproductive stage. In this study, we examined 30 rice varieties, which revealed significant differences in the photosynthetic performance responses under salt stress conditions during the reproductive stage, which ultimately affected yield components after recovery. In rice with a correlation between net photosynthetic rate (PN) and intercellular CO2 concentration (Ci) under salt stress, PN was found to be negatively correlated with filled grain number after recovery. Applying stringent criteria, we identified 130,317 SNPs and 15,396 InDels between two "high-yield rice" varieties and two "low-yield rice" varieties with contrasting photosynthesis and grain yield characteristics. A total of 2,089 genes containing high- and moderate-impact SNPs or InDels were evaluated by gene ontology (GO) enrichment analysis, resulting in over-represented terms in the apoptotic process and kinase activity. Among these genes, 262 were highly expressed in reproductive tissues, and most were annotated as receptor-like protein kinases. These findings highlight the importance of variations in signaling components in the genome and these loci can serve as potential genes in rice breeding to produce a variety with salt avoidance that leads to increased yield in saline soil.


Assuntos
Grão Comestível/genética , Genoma de Planta , Oryza/genética , Fotossíntese , Estresse Salino , Dióxido de Carbono/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo
3.
BMC Genomics ; 20(1): 76, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30669971

RESUMO

BACKGROUND: Salt stress, a major plant environmental stress, is a critical constraint for rice productivity. Dissecting the genetic loci controlling salt tolerance in rice for improving productivity, especially at the flowering stage, remains challenging. Here, we conducted a genome-wide association study (GWAS) of salt tolerance based on exome sequencing of the Thai rice accessions. RESULTS: Photosynthetic parameters and cell membrane stability under salt stress at the flowering stage; and yield-related traits of 104 Thai rice (Oryza sativa L.) accessions belonging to the indica subspecies were evaluated. The rice accessions were subjected to exome sequencing, resulting in 112,565 single nucleotide polymorphisms (SNPs) called with a minor allele frequency of at least 5%. LD decay analysis of the panel indicates that the average LD for SNPs at 20 kb distance from each other was 0.34 (r2), which decayed to its half value (~ 0.17) at around 80 kb. By GWAS performed using mixed linear model, two hundred loci containing 448 SNPs on exons were identified based on the salt susceptibility index of the net photosynthetic rate at day 6 after salt stress; and the number of panicles, filled grains and unfilled grains per plant. One hundred and forty six genes, which accounted for 73% of the identified loci, co-localized with the previously reported salt quantitative trait loci (QTLs). The top four regions that contained a high number of significant SNPs were found on chromosome 8, 12, 1 and 2. While many are novel, their annotation is consistent with potential involvement in plant salt tolerance and in related agronomic traits. These significant SNPs greatly help narrow down the region within these QTLs where the likely underlying candidate genes can be identified. CONCLUSIONS: Insight into the contribution of potential genes controlling salt tolerance from this GWAS provides further understanding of salt tolerance mechanisms of rice at the flowering stage, which can help improve yield productivity under salinity via gene cloning and genomic selection.


Assuntos
Oryza/genética , Tolerância ao Sal/genética , Flores , Loci Gênicos , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Oryza/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Tailândia
4.
Protoplasma ; 256(2): 331-347, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30097762

RESUMO

How many subcellular targets of the beneficial silicon effect do exist in salt-stressed rice? Here, we investigate the effects of silicon on the different components of salt stress, i.e., osmotic stress, sodium, and chloride toxicity. These components are separated by multivariate analysis of 18 variables measured in rice seedlings (Oryza sativa L.). Multivariate analysis can dissect vectors and extract targets as principal components, given the regressions between all variables are known. Consequently, the exploration of 153 correlations and 306 regression models between all variables is essential, and regression parameters for variables of shoot (silicon, sodium, chloride, carotenoids, chlorophylls a and b, and relative growth rate) and variables of shoot and root (hydrogen peroxide, ascorbate peroxidase (APX), catalase (CAT), fresh weight, dry weight, root-to-shoot ratio) are determined. The regression models [log (y) = y0 + a × log (x)] are confirmed by variance analysis of global goodness of fits (p < 0.0001). Thereby, logarithmic transformation yields linearization for multivariate analysis by Pearson's correlation. Four principal components are extracted: two targets of osmotic stress, one target of sodium toxicity, and one target of chloride toxicity. Thereby, silicon improves salt tolerance by increasing APX and CAT activities and decreasing hydrogen peroxide, salt ion accumulation, photosynthetic pigment losses, and growth inhibition. Salt stress increases silicon uptake pointing to a physiological regulation of plant salt stress in the presence of silicon. This mechanism and its four components are promising targets for further agricultural application.


Assuntos
Oryza/química , Silício/química , Cloreto de Sódio/química , Análise Multivariada , Estresse Salino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...