Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 475(2228): 20190161, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31534423

RESUMO

Many time-series analysis techniques use sliding window approaches or are repeatedly applied over a continuous range of parameters. When combined with a significance test, intrinsic correlations among the pointwise analysis results can make falsely positive significant points appear as continuous patches rather than as isolated points. To account for this effect, we present an areawise significance test that identifies such false-positive patches. For this purpose, we numerically estimate the decorrelation length of the statistic of interest by calculating correlation functions between the analysis results and require an areawise significant point to belong to a patch of pointwise significant points that is larger than this decorrelation length. We apply our areawise test to results from windowed traditional and scale-specific recurrence network analysis in order to identify dynamical anomalies in time series of a non-stationary Rössler system and tree ring width index values from Eastern Canada. Especially, in the palaeoclimate context, the areawise testing approach markedly reduces the number of points that are identified as significant and therefore highlights only the most relevant features in the data. This provides a crucial step towards further establishing recurrence networks as a tool for palaeoclimate data analysis.

2.
Chaos ; 28(8): 085702, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30180600

RESUMO

Analyzing data from paleoclimate archives such as tree rings or lake sediments offers the opportunity of inferring information on past climate variability. Often, such data sets are univariate and a proper reconstruction of the system's higher-dimensional phase space can be crucial for further analyses. In this study, we systematically compare the methods of time delay embedding and differential embedding for phase space reconstruction. Differential embedding relates the system's higher-dimensional coordinates to the derivatives of the measured time series. For implementation, this requires robust and efficient algorithms to estimate derivatives from noisy and possibly non-uniformly sampled data. For this purpose, we consider several approaches: (i) central differences adapted to irregular sampling, (ii) a generalized version of discrete Legendre coordinates, and (iii) the concept of Moving Taylor Bayesian Regression. We evaluate the performance of differential and time delay embedding by studying two paradigmatic model systems-the Lorenz and the Rössler system. More precisely, we compare geometric properties of the reconstructed attractors to those of the original attractors by applying recurrence network analysis. Finally, we demonstrate the potential and the limitations of using the different phase space reconstruction methods in combination with windowed recurrence network analysis for inferring information about past climate variability. This is done by analyzing two well-studied paleoclimate data sets from Ecuador and Mexico. We find that studying the robustness of the results when varying the analysis parameters is an unavoidable step in order to make well-grounded statements on climate variability and to judge whether a data set is suitable for this kind of analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...