Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 18(6): 1639-1663, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31102081

RESUMO

In the past years, many attempts have been made in order to model the process of bone remodeling. This process is complex, as it is governed by not yet completely understood biomechanical coupled phenomena. It is well known that bone tissue is able to self-adapt to different environmental demands of both mechanical and biological origin. The mechanical aspects are related to the functional purpose of the bone tissue, i.e., to provide support to the body and protection for the vitally important organs in response to the external loads. The many biological aspects include the process of oxygen and nutrients supply. To describe the biomechanical process of functional adaptation of bone tissue, the approach commonly adopted is to consider it as a 'feedback' control regulated by the bone cells, namely osteoblasts and osteoclasts. They are responsible for bone synthesis and resorption, respectively, while osteocytes are in charge of 'sensing' the mechanical status of the tissue. Within this framework, in  Lekszycki and dell'Isola (ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 92(6):426-444, 2012), a model based on a system of integro-differential equations was introduced aiming to predict the evolution of the process of remodeling in surgically reconstructed bones. The main idea in the aforementioned model was to introduce a scalar field, describing the biological stimulus regulating the interaction among all kinds of bone cells at a macroscale. This biological field was assumed to depend locally on certain deformation measures of the (reconstructed) bone tissue. However, biological knowledge suggests that this stimulus, after having been produced, 'diffuses' in bone tissue, so controlling in a complex way its remodeling. This means that the cells which are target of the stimulus may not be located in the same place occupied by the cells producing it. In this paper, we propose a model which intends to explain the diffusive nature of the biological stimulus to encompass the time-dependent and space-time displaced effects involved in bone reconstruction process. Preliminary numerical simulations performed in typical cases are presented. These numerical case studies suggest that the 'diffusive' model of stimulus is promising: we plan to continue these kinds of studies in further investigations.


Assuntos
Remodelação Óssea/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Densidade Óssea , Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Simulação por Computador , Retroalimentação , Análise Numérica Assistida por Computador , Tamanho do Órgão
2.
Am J Phys Anthropol ; 154(4): 525-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24862036

RESUMO

Diagnosis of occlusal enamel caries in archaeologically derived collections remains a controversial problem because the accumulation of contaminants in fissures can interfere with diagnosis. Certain novel light-induced fluorescence methods, such as the DIAGNODent pen 2190 (DD) and VistaCam iX Proof (VC), have been used to detect dental caries in clinical settings. In this study, the abilities of DD and VC to detect initial enamel caries in archaeologically derived material is determined and compared with those of other methods (visual inspection, X-ray, histology, and micro-CT). Dental material encompassing the remains of 58 individuals, including a total of 380 teeth from each of three historical periods: modern Islamic (AD 1850-1950), Islamic (AD 600-1200) and late Roman (AD 200-400), obtained from two archaeological sites (Terqa and Tell Masaikh) located in the Middle Euphrates valley (Syria), were analyzed. VC was found to have excellent sensitivity (98), while DD obtained lower sensitivity (76) in detecting dental caries in its early stages. The results obtained by VC and micro-CT, considered the most reliable imaging technique, were not statistically significant (P = 0.3068). By contrast, results obtained by DD and micro-CT results, and DD and VC results were statistically significant (P < 0.0001, P = 0.0015, respectively). However the presence of dirt, stain, calculus, and plaque in the pits and fissures of the occlusal surface compromise correct diagnosis of caries by VC and DD. Consequently, for teeth recovered from archaeological contexts where staining, calculus and plaque are present, the best solution remains micro-CT.


Assuntos
Arqueologia/métodos , Cárie Dentária/diagnóstico , Paleodontologia/métodos , Espectrometria de Fluorescência/métodos , Cárie Dentária/história , História do Século XIX , História do Século XX , História Antiga , História Medieval , Humanos , Descoloração de Dente , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...