Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(35): eadh8043, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656790

RESUMO

Phytoplankton are responsible for half of all oxygen production and drive the ocean carbon cycle. Metabolic theory predicts that increasing global temperatures will cause phytoplankton to become more heterotrophic and smaller. Here, we uncover the metabolic trade-offs between cellular space, energy, and stress management driving phytoplankton thermal acclimation and how these might be overcome through evolutionary adaptation. We show that the observed relationships between traits such as chlorophyll, lipid content, C:N, and size can be predicted on the basis of the metabolic demands of the cell, the thermal dependency of transporters, and changes in membrane lipids. We suggest that many of the observed relationships are not fixed physiological constraints but rather can be altered through adaptation. For example, the evolution of lipid metabolism can favor larger cells with higher lipid content to mitigate oxidative stress. These results have implications for rates of carbon sequestration and export in a warmer ocean.


Assuntos
Clorofila , Fotossíntese , Respiração , Aclimatação , Lipídeos de Membrana
2.
J Plankton Res ; 45(4): 576-596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483910

RESUMO

Phago-mixotrophy, the combination of photoautotrophy and phagotrophy in mixoplankton, organisms that can combine both trophic strategies, have gained increasing attention over the past decade. It is now recognized that a substantial number of protistan plankton species engage in phago-mixotrophy to obtain nutrients for growth and reproduction under a range of environmental conditions. Unfortunately, our current understanding of mixoplankton in aquatic systems significantly lags behind our understanding of zooplankton and phytoplankton, limiting our ability to fully comprehend the role of mixoplankton (and phago-mixotrophy) in the plankton food web and biogeochemical cycling. Here, we put forward five research directions that we believe will lead to major advancement in the field: (i) evolution: understanding mixotrophy in the context of the evolutionary transition from phagotrophy to photoautotrophy; (ii) traits and trade-offs: identifying the key traits and trade-offs constraining mixotrophic metabolisms; (iii) biogeography: large-scale patterns of mixoplankton distribution; (iv) biogeochemistry and trophic transfer: understanding mixoplankton as conduits of nutrients and energy; and (v) in situ methods: improving the identification of in situ mixoplankton and their phago-mixotrophic activity.

3.
Proc Biol Sci ; 288(1953): 20210940, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34130504

RESUMO

Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here, we present an approach for integrating multivariate trait data into a predictive model of trait evolution. We investigated the outcome of thousands of possible adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas exposed to high CO2. We found that the direction of historical bias (existing trait correlations) influenced both the rate of adaptation and the evolved phenotypes (trait combinations). Critically, we use fitness landscapes derived directly from empirical trait values to capture known evolutionary phenomena. This work demonstrates that ecological models need to represent both changes in traits and changes in the correlation between traits in order to accurately capture phytoplankton evolution and predict future shifts in elemental cycling.


Assuntos
Evolução Biológica , Dióxido de Carbono , Adaptação Fisiológica , Eucariotos , Fenótipo
4.
Nat Microbiol ; 6(2): 147-148, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33510437
5.
An Acad Bras Cienc ; 88(3 Suppl): 1971-1991, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27901192

RESUMO

Planktonic models represent a powerful tool for creating hypotheses and making predictions about the functioning of marine ecosystems. Their complexity varies according to the number of state variables and the choice of functional forms. We evaluated plankton models during the last 15 years (n =145) with the aims of understanding why they differ in complexity, evaluating model robustness, and describing studies of plankton modelling around the globe. We classified models into four groups: Nutrient-Phytoplankton-Zooplankton (NPZ), Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD), Size-Structured (SS) and Plankton-Functional-Type (PFT). Our results revealed that the number of state variables varied according to the question being addressed: NPZ models were more frequently applied in physical-biological studies, while PFT models were more applied for investigating biogeochemical cycles. Most models were based on simple functional forms which neglect important feedback related to control of plankton dynamics. Modelling studies sometimes failed to describe sensitivity analysis, calibration and validation. The importance of testing different functional forms was commonly overlooked, and the lack of empirical data affected the verification of model robustness. Lastly, we highlight the need to develop modelling studies in the Southern Hemisphere, including Brazil, in order to provide predictions that assist the management of marine ecosystems.


Assuntos
Ecossistema , Modelos Biológicos , Fitoplâncton , Zooplâncton , Animais , Plâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...