Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37232922

RESUMO

The dispersion of uranium in the environment can pose a problem for the health of humans and other living organisms. It is therefore important to monitor the bioavailable and hence toxic fraction of uranium in the environment, but no efficient measurement methods exist for this. Our study aims to fill this gap by developing a genetically encoded FRET-based ratiometric uranium biosensor. This biosensor was constructed by grafting two fluorescent proteins to both ends of calmodulin, a protein that binds four calcium ions. By modifying the metal-binding sites and the fluorescent proteins, several versions of the biosensor were generated and characterized in vitro. The best combination results in a biosensor that is affine and selective for uranium compared to metals such as calcium or other environmental compounds (sodium, magnesium, chlorine). It has a good dynamic range and should be robust to environmental conditions. In addition, its detection limit is below the uranium limit concentration in drinking water defined by the World Health Organization. This genetically encoded biosensor is a promising tool to develop a uranium whole-cell biosensor. This would make it possible to monitor the bioavailable fraction of uranium in the environment, even in calcium-rich waters.


Assuntos
Técnicas Biossensoriais , Urânio , Humanos , Transferência Ressonante de Energia de Fluorescência/métodos , Cálcio , Proteínas de Fluorescência Verde , Técnicas Biossensoriais/métodos
2.
Inorg Chem ; 62(21): 8334-8346, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37184364

RESUMO

Due to its presence in the nuclear industry and its strong radiotoxicity, plutonium is an actinide of major interest in the event of internal contamination. To improve the understanding of its mechanisms of transport and accumulation in the body, the complexation of Pu(IV) to the most common protein calcium-binding motif found in cells, the EF-hand motif of calmodulin, was investigated. Visible and X-ray absorption spectroscopies (XAS) in solution made it possible to investigate the speciation of plutonium at physiological pH (pH 7.4) and pH 6 in two variants of the calmodulin Ca-binding site I and using Pu(IV) in different media: carbonate, chloride, or nitrate solutions. Three different species of Pu were identified in the samples, with formation of 1:1 Pu(IV):calmodulin peptide complexes, Pu(IV) reduction, and formation of peptide-mediated Pu(IV) hexanuclear cluster.


Assuntos
Plutônio , Plutônio/química , Calmodulina , Oxirredução , Cálcio , Sítios de Ligação
3.
Inorg Chem ; 61(50): 20480-20492, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36469451

RESUMO

As an alpha emitter and chemical toxicant, uranium toxicity in living organisms is driven by its molecular interactions. It is therefore essential to identify main determinants of uranium affinity for proteins. Others and we showed that introducing a phosphoryl group in the coordination sphere of uranyl confers a strong affinity of proteins for uranyl. In this work, using calmodulin site 1 as a template, we modulate the structural organization of a metal-binding loop comprising carboxylate and/or carbonyl ligands and reach affinities for uranyl comparable to that provided by introducing a strong phosphoryl ligand. Shortening the metal binding loop of calmodulin site 1 from 12 to 10 amino acids in CaMΔ increases the uranyl-binding affinity by about 2 orders of magnitude to log KpH7 = 9.55 ± 0.11 (KdpH7 = 280 ± 60 pM). Structural analysis by FTIR, XAS, and molecular dynamics simulations suggests an optimized coordination of the CaMΔ-uranyl complex involving bidentate and monodentate carboxylate groups in the uranyl equatorial plane. The main role of this coordination sphere in reaching subnanomolar dissociation constants for uranyl is supported by similar uranyl affinities obtained in a cyclic peptide reproducing CaMΔ binding loop. In addition, CaMΔ presents a uranyl/calcium selectivity of 107 that is even higher in the cyclic peptide.


Assuntos
Calmodulina , Urânio , Calmodulina/química , Calmodulina/metabolismo , Urânio/química , Cálcio/metabolismo , Ligantes , Ácidos Carboxílicos/química , Peptídeos Cíclicos/química
4.
Biomolecules ; 12(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421716

RESUMO

Uranyl-protein interactions participate in uranyl trafficking or toxicity to cells. In addition to their qualitative identification, thermodynamic data are needed to predict predominant mechanisms that they mediate in vivo. We previously showed that uranyl can substitute calcium at the canonical EF-hand binding motif of calmodulin (CaM) site I. Here, we investigate thermodynamic properties of uranyl interaction with site II and with the whole CaM N-terminal domain by spectrofluorimetry and ITC. Site II has an affinity for uranyl about 10 times lower than site I. Uranyl binding at site I is exothermic with a large enthalpic contribution, while for site II, the enthalpic contribution to the Gibbs free energy of binding is about 10 times lower than the entropic term. For the N-terminal domain, macroscopic binding constants for uranyl are two to three orders of magnitude higher than for calcium. A positive cooperative process driven by entropy increases the second uranyl-binding event as compared with the first one, with ΔΔG = -2.0 ± 0.4 kJ mol-1, vs. ΔΔG = -6.1 ± 0.1 kJ mol-1 for calcium. Site I phosphorylation largely increases both site I and site II affinity for uranyl and uranyl-binding cooperativity. Combining site I phosphorylation and site II Thr7Trp mutation leads to picomolar dissociation constants Kd1 = 1.7 ± 0.3 pM and Kd2 = 196 ± 21 pM at pH 7. A structural model obtained by MD simulations suggests a structural role of site I phosphorylation in the affinity modulation.


Assuntos
Cálcio , Calmodulina , Calmodulina/química , Fosforilação , Cálcio/metabolismo , Sítios de Ligação , Termodinâmica
6.
ISME J ; 16(3): 705-716, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34556817

RESUMO

Uranium is a naturally occurring radionuclide. Its redistribution, primarily due to human activities, can have adverse effects on human and non-human biota, which poses environmental concerns. The molecular mechanisms of uranium tolerance and the cellular response induced by uranium exposure in bacteria are not yet fully understood. Here, we carried out a comparative analysis of four actinobacterial strains isolated from metal and radionuclide-rich soils that display contrasted uranium tolerance phenotypes. Comparative proteogenomics showed that uranyl exposure affects 39-47% of the total proteins, with an impact on phosphate and iron metabolisms and membrane proteins. This approach highlighted a protein of unknown function, named UipA, that is specific to the uranium-tolerant strains and that had the highest positive fold-change upon uranium exposure. UipA is a single-pass transmembrane protein and its large C-terminal soluble domain displayed a specific, nanomolar binding affinity for UO22+ and Fe3+. ATR-FTIR and XAS-spectroscopy showed that mono and bidentate carboxylate groups of the protein coordinated both metals. The crystal structure of UipA, solved in its apo state and bound to uranium, revealed a tandem of PepSY domains in a swapped dimer, with a negatively charged face where uranium is bound through a set of conserved residues. This work reveals the importance of UipA and its PepSY domains in metal binding and radionuclide tolerance.


Assuntos
Urânio , Bactérias/genética , Bactérias/metabolismo , Ferro/metabolismo , Proteínas de Ligação ao Ferro , Solo
7.
Antioxidants (Basel) ; 9(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674377

RESUMO

In proteins, methionine (Met) can be oxidized into Met sulfoxide (MetO). The ubiquitous methionine sulfoxide reductases (Msr) A and B are thiol-oxidoreductases reducing MetO. Reversible Met oxidation has a wide range of consequences, from protection against oxidative stress to fine-tuned regulation of protein functions. Bacteria distinguish themselves by the production of molybdenum-containing enzymes reducing MetO, such as the periplasmic MsrP which protects proteins during acute oxidative stress. The versatile dimethyl sulfoxide (DMSO) reductases were shown to reduce the free amino acid MetO, but their ability to reduce MetO within proteins was never evaluated. Here, using model oxidized proteins and peptides, enzymatic and mass spectrometry approaches, we showed that the Rhodobacter sphaeroides periplasmic DorA-type DMSO reductase reduces protein bound MetO as efficiently as the free amino acid L-MetO and with catalytic values in the range of those described for the canonical Msrs. The identification of this fourth type of enzyme able to reduce MetO in proteins, conserved across proteobacteria and actinobacteria, suggests that organisms employ enzymatic systems yet undiscovered to regulate protein oxidation states.

8.
Toxicol In Vitro ; 66: 104863, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32304792

RESUMO

Inhalation of 60Co3O4 particles may occur at the work place in nuclear industry. Their low solubility may result in chronic lung exposure to γ rays. Our strategy for an improved therapeutic approach is to enhance particle dissolution to facilitate cobalt excretion, as the dissolved fraction is rapidly eliminated, mainly in urine. In vitro dissolution of Co3O4 particles was assessed with two complementary assays in lung fluid surrogates to mimic a pulmonary contamination scenario. Twenty-one molecules and eleven combinations were selected through an extensive search in the literature, based on dissolution studies of other metal oxides (Fe, Mn, Cu) and tested for dissolution enhancement of cobalt particles after 1-28 days of incubation. DTPA, the recommended treatment following cobalt contamination did not enhance 60Co3O4 particles dissolution when used alone. However, by combining molecules with different properties, such as redox potential and chelating ability, we greatly improved the efficacy of each drug used alone, leading for the highest efficacy, to a 2.7 fold increased dissolution as compared to controls. These results suggest that destabilization of the particle surface is an important initiating event for a good efficacy of chelating drugs, and open new perspectives for the identification of new therapeutic strategies.


Assuntos
Radioisótopos de Cobalto/química , Cobalto/química , Descontaminação/métodos , Óxidos/química , Líquidos Corporais , Quelantes/química , Ácido Edético/química , Pulmão , Ácido Pentético/química , Solubilidade
9.
Nucleic Acids Res ; 47(21): 11403-11417, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31598697

RESUMO

Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO. Here, we report the biochemical characterization and crystal structure of DdrO, which is the first structure of a XRE protein targeted by a COG2856 protein. DdrO is composed of two domains that fold independently and are separated by a flexible linker. The N-terminal domain corresponds to the DNA-binding domain. The C-terminal domain, containing three alpha helices arranged in a novel fold, is required for DdrO dimerization. Cleavage by IrrE occurs in the loop between the last two helices of DdrO and abolishes dimerization and DNA binding. The cleavage site is hidden in the DdrO dimer structure, indicating that IrrE cleaves DdrO monomers or that the interaction with IrrE induces a structural change rendering accessible the cleavage site. Predicted COG2856/XRE regulatory protein pairs are found in many bacteria, and available data suggest two different molecular mechanisms for stress-induced gene expression: COG2856 protein-mediated cleavage or inhibition of oligomerization without cleavage of the XRE repressor.


Assuntos
Deinococcus , Proteínas Repressoras/química , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Fatores de Transcrição/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dano ao DNA , Deinococcus/enzimologia , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Metaloproteases/química , Metaloproteases/genética , Metaloproteases/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Fatores de Transcrição/genética
10.
Biochim Biophys Acta Bioenerg ; 1860(11): 148084, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520614

RESUMO

Photosynthetic [2Fe-2S] plant-type ferredoxins have a central role in electron transfer between the photosynthetic chain and various metabolic pathways. Several genes are coding for [2Fe2S] ferredoxins in cyanobacteria, with four in the thermophilic cyanobacterium Thermosynechococcus elongatus. The structure and functional properties of the major ferredoxin Fd1 are well known but data on the other ferredoxins are scarce. We report the structural and functional properties of a novel minor type ferredoxin, Fd2 of T. elongatus, homologous to Fed4 from Synechocystis sp. PCC 6803. Remarkably, the midpoint potential of Fd2, Em = -440 mV, is lower than that of Fd1, Em = -372 mV. However, while Fd2 can efficiently react with photosystem I or nitrite reductase, time-resolved spectroscopy shows that Fd2 has a very low capacity to reduce ferredoxin-NADP+ oxidoreductase (FNR). These unique Fd2 properties are discussed in relation with its structure, solved at 1.38 Šresolution. The Fd2 structure significantly differs from other known ferredoxins structures in loop 2, N-terminal region, hydrogen bonding networks and surface charge distributions. UV-Vis, EPR, and Mid- and Far-IR data also show that the electronic properties of the [2Fe2S] cluster of Fd2 and its interaction with the protein differ from those of Fd1 both in the oxidized and reduced states. The structural analysis allows to propose that valine in the motif Cys53ValAsnCys56 of Fd2 and the specific orientation of Phe72, explain the electron transfer properties of Fd2. Strikingly, the nature of these residues correlates with different phylogenetic groups of cyanobacterial Fds. With its low redox potential and its discrimination against FNR, Fd2 exhibits a unique capacity to direct efficiently photosynthetic electrons to metabolic pathways not dependent on FNR.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Ferredoxinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cianobactérias/genética , Ferredoxinas/química , Ferredoxinas/genética , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Filogenia , Alinhamento de Sequência , Thermosynechococcus
11.
Biochem J ; 475(23): 3779-3795, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30389844

RESUMO

Methionine (Met) is prone to oxidation and can be converted to Met sulfoxide (MetO), which exists as R- and S-diastereomers. MetO can be reduced back to Met by the ubiquitous methionine sulfoxide reductase (Msr) enzymes. Canonical MsrA and MsrB were shown to be absolutely stereospecific for the reduction of S-diastereomer and R-diastereomer, respectively. Recently, a new enzymatic system, MsrQ/MsrP which is conserved in all gram-negative bacteria, was identified as a key actor for the reduction of oxidized periplasmic proteins. The haem-binding membrane protein MsrQ transmits reducing power from the electron transport chains to the molybdoenzyme MsrP, which acts as a protein-MetO reductase. The MsrQ/MsrP function was well established genetically, but the identity and biochemical properties of MsrP substrates remain unknown. In this work, using the purified MsrP enzyme from the photosynthetic bacteria Rhodobacter sphaeroides as a model, we show that it can reduce a broad spectrum of protein substrates. The most efficiently reduced MetO is found in clusters, in amino acid sequences devoid of threonine and proline on the C-terminal side. Moreover, R. sphaeroides MsrP lacks stereospecificity as it can reduce both R- and S-diastereomers of MetO, similarly to its Escherichia coli homolog, and preferentially acts on unfolded oxidized proteins. Overall, these results provide important insights into the function of a bacterial envelop protecting system, which should help understand how bacteria cope in harmful environments.


Assuntos
Proteínas de Bactérias/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Metionina/análogos & derivados , Rhodobacter sphaeroides/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Metionina/química , Metionina/metabolismo , Metionina Sulfóxido Redutases/genética , Mutação , Oxirredução , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Estereoisomerismo , Especificidade por Substrato
12.
Chemistry ; 23(61): 15505-15517, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28869680

RESUMO

Better understanding of uranyl-protein interactions is a prerequisite to predict uranium chemical toxicity in cells. The EF-hand motif of the calmodulin site I is about thousand times more affine for uranyl than for calcium, and threonine phosphorylation increases the uranyl affinity by two orders of magnitude at pH 7. In this study, we confront X-ray absorption spectroscopy with Fourier transform infrared (FTIR) spectroscopy, time-resolved laser-induced fluorescence spectroscopy (TRLFS), and structural models obtained by molecular dynamics simulations to analyze the uranyl coordination in the native and phosphorylated calmodulin site I. For the native site I, extended X-ray absorption fine structure (EXAFS) data evidence a short U-Oeq distance, in addition to distances compatible with mono- and bidentate coordination by carboxylate groups. Further analysis of uranyl speciation by TRLFS and thorough investigation of the fluorescence decay kinetics strongly support the presence of a hydroxide uranyl ligand. For a phosphorylated site I, the EXAFS and FTIR data support a monodentate uranyl coordination by the phosphoryl group and strong interaction with mono- and bidentate carboxylate ligands. This study confirms the important role of a phosphoryl ligand in the stability of uranyl-protein interactions. By evidencing a hydroxide uranyl ligand in calmodulin site I, this study also highlights the possible role of less studied ligands as water or hydroxide ions in the stability of protein-uranyl complexes.


Assuntos
Calmodulina/metabolismo , Complexos de Coordenação/metabolismo , Urânio/química , Motivos de Aminoácidos , Sítios de Ligação , Calmodulina/química , Complexos de Coordenação/química , Simulação de Dinâmica Molecular , Paramecium tetraurellia/metabolismo , Fosforilação , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
13.
Dalton Trans ; 46(5): 1389-1396, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28112296

RESUMO

Capillary electrophoresis coupled with an inductively coupled plasma mass spectrometer was applied for the first time to determine the binding constant of human transferrin (Tf) for tetravalent plutonium. The experiments were carried out in a buffer 2-(N-morpholino)ethanesulfonic acid (MES) at pH 6, 0.1 M NaCl and at a temperature of 25 °C. The nitrilotriacetate anion (NTA) used in this study prevents the hydrolysis of plutonium and is an ideal competitor with Tf for Pu, both ligands sharing comparable binding strength. The separation revealed unambiguous two peaks associated with the complex Pu(NTA)2 used as the initial species and with Pu-transferrin. Two series of independent experiments were conducted and gave the first stepwise conditional bicarbonate-free Pu-transferrin binding constant of . In the absence of bicarbonate the affinity of transferrin for plutonium at pH 6 is about 104 times stronger than that of iron at pH 6.7 .


Assuntos
Plutônio/metabolismo , Transferrina/metabolismo , Eletroforese Capilar , Humanos , Espectrometria de Massas , Ligação Proteica
14.
Biochim Biophys Acta ; 1857(9): 1353-1362, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27207587

RESUMO

While the molybdenum cofactor in the majority of bisPGD enzymes goes through two consecutive 1-electron redox transitions, previous protein-film voltammetric results indicated the possibility of cooperative (n=2) redox behavior in the bioenergetic enzyme arsenite oxidase (Aio). Combining equilibrium redox titrations, optical and EPR spectroscopies on concentrated samples obtained via heterologous expression, we unambiguously confirm this claim and quantify Aio's redox cooperativity. The stability constant, Ks, of the Mo(V) semi-reduced intermediate is found to be lower than 10(-3). Site-directed mutagenesis of residues in the vicinity of the Mo-cofactor demonstrates that the degree of redox cooperativity is sensitive to H-bonding interactions between the pyranopterin moieties and amino acid residues. Remarkably, in particular replacing the Gln-726 residue by Gly results in stabilization of (low-temperature) EPR-observable Mo(V) with KS=4. As evidenced by comparison of room temperature optical and low temperature EPR titrations, the degree of stabilization is temperature-dependent. This highlights the importance of room-temperature redox characterizations for correctly interpreting catalytic properties in this group of enzymes. Geochemical and phylogenetic data strongly indicate that molybdenum played an essential biocatalytic roles in early life. Molybdenum's redox versatility and in particular the ability to show cooperative (n=2) redox behavior provide a rationale for its paramount catalytic importance throughout the evolutionary history of life. Implications of the H-bonding network modulating Molybdenum's redox properties on details of a putative inorganic metabolism at life's origin are discussed.


Assuntos
Molibdênio/química , Oxirredutases/química , Pterinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Oxirredução
15.
Science ; 352(6289): 1105-9, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230378

RESUMO

Metal acquisition is a vital microbial process in metal-scarce environments, such as inside a host. Using metabolomic exploration, targeted mutagenesis, and biochemical analysis, we discovered an operon in Staphylococcus aureus that encodes the different functions required for the biosynthesis and trafficking of a broad-spectrum metallophore related to plant nicotianamine (here called staphylopine). The biosynthesis of staphylopine reveals the association of three enzyme activities: a histidine racemase, an enzyme distantly related to nicotianamine synthase, and a staphylopine dehydrogenase belonging to the DUF2338 family. Staphylopine is involved in nickel, cobalt, zinc, copper, and iron acquisition, depending on the growth conditions. This biosynthetic pathway is conserved across other pathogens, thus underscoring the importance of this metal acquisition strategy in infection.


Assuntos
Alquil e Aril Transferases/metabolismo , Isomerases de Aminoácido/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Imidazóis/metabolismo , Oxirredutases/metabolismo , Staphylococcus aureus/enzimologia , Alquil e Aril Transferases/genética , Isomerases de Aminoácido/genética , Ácido Azetidinocarboxílico/metabolismo , Vias Biossintéticas , Cobalto/metabolismo , Cobre/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina/química , Metaboloma , Níquel/metabolismo , Óperon , Oxirredutases/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Zinco/metabolismo
16.
J Biol Inorg Chem ; 20(5): 905-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26070361

RESUMO

Calmodulin (CaM) is an essential Ca(II)-dependent regulator of cell physiology. To understand its interaction with Ca(II) at a molecular level, it is essential to examine Ca(II) binding at each site of the protein, even if it is challenging to estimate the site-specific binding properties of the interdependent CaM-binding sites. In this study, we evaluated the site-specific Ca(II)-binding affinity of sites I and II of the N-terminal domain by combining site-directed mutagenesis and spectrofluorimetry. The mutations had very low impact on the protein structure and stability. We used these binding constants to evaluate the inter-site cooperativity energy and compared it with its lower limit value usually reported in the literature. We found that site I affinity for Ca(II) was 1.5 times that of site II and that cooperativity induced an approximately tenfold higher affinity for the second Ca(II)-binding event, as compared to the first one. We further showed that insertion of a tryptophan at position 7 of site II binding loop significantly increased site II affinity for Ca(II) and the intra-domain cooperativity. ΔH and ΔS parameters were studied by isothermal titration calorimetry for Ca(II) binding to site I, site II and to the entire N-terminal domain. They showed that calcium binding is mainly entropy driven for the first and second binding events. These findings provide molecular information on the structure-affinity relationship of the individual sites of the CaM N-terminal domain and new perspectives for the optimization of metal ion binding by mutating the EF-hand loops sequences.


Assuntos
Cálcio/química , Calmodulina/química , Termodinâmica , Sequência de Aminoácidos , Sítios de Ligação , Calmodulina/genética , Calmodulina/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Estrutura Terciária de Proteína
17.
Mol Microbiol ; 94(2): 434-49, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25170972

RESUMO

Deinococcus bacteria are famous for their extreme radiation tolerance. The IrrE protein was shown to be essential for radiation tolerance and, in an unelucidated manner, for induction of a number of genes in response to radiation, including recA and other DNA repair genes. Earlier studies indicated that IrrE could be a zinc peptidase, but proteolytic activity was not demonstrated. Here, using several in vivo and in vitro experiments, IrrE from Deinococcus deserti was found to interact with DdrO, a predicted regulator encoded by a radiation-induced gene that is, like irrE, highly conserved in Deinococcus. Moreover, IrrE was found to cleave DdrO in vitro and when the proteins were coexpressed in Escherichia coli. This cleavage was not observed in the presence of metal chelator EDTA or when IrrE contains a mutation in the conserved active-site motif of metallopeptidases. In D. deserti, IrrE-dependent cleavage of DdrO was observed after exposure to radiation. Furthermore, DdrO-dependent repression of the promoter of a radiation-induced gene was shown. These results demonstrate that IrrE is a metalloprotease and we propose that IrrE-mediated cleavage inactivates repressor protein DdrO, leading to transcriptional induction of various genes required for repair and survival after exposure of Deinococcus to radiation.


Assuntos
Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica , Metaloproteases/metabolismo , Proteínas Repressoras/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Proteólise , Alinhamento de Sequência
18.
PLoS One ; 7(8): e41922, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870263

RESUMO

To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9)TKE(12) sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d) = 25±6 nM to K(d) = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d) = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as)(P-O) and ν(s)(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as)(UO(2))(2+) vibration (from 923 cm(-1) to 908 cm(-1)) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Calmodulina/química , Engenharia de Proteínas , Urânio/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Caseína Quinase II/química , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Concentração de Íons de Hidrogênio , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Urânio/metabolismo , Urânio/toxicidade
19.
PLoS Pathog ; 8(4): e1002637, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496657

RESUMO

The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex with its chaperone, SpcU. ExoU folds into membrane-binding, bridging, and phospholipase domains. SpcU maintains the N-terminus of ExoU in an unfolded state, required for secretion. The phospholipase domain carries an embedded catalytic site whose position within ExoU does not permit direct interaction with the bilayer, which suggests that ExoU must undergo a conformational rearrangement in order to access lipids within the target membrane. The bridging domain connects catalytic domain and membrane-binding domains, the latter of which displays specificity to PI(4,5)P2. Both transfection experiments and infection of eukaryotic cells with ExoU-secreting bacteria show that ExoU ubiquitination results in its co-localization with endosomal markers. This could reflect an attempt of the infected cell to target ExoU for degradation in order to protect itself from its aggressive cytotoxic action.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Toxinas Bacterianas , Dobramento de Proteína , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade , Ubiquitinação
20.
J Biol Chem ; 285(30): 23224-32, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20385547

RESUMO

The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3SS is the translocon, a proteinaceous channel that is inserted into the target membrane, which allows passage of toxins into target cells. In most bacterial species, two distinct membrane proteins (the "translocators") are involved in translocon formation, whereas in the bacterial cytoplasm, however, they remain associated to a common chaperone. To date, the strategy employed by a single chaperone to recognize two distinct translocators is unknown. Here, we report the crystal structure of a complex between the Pseudomonas translocator chaperone PcrH and a short region from the minor translocator PopD. PcrH displays a 7-helical tetratricopeptide repeat fold that harbors the PopD peptide within its concave region, originally believed to be involved in recognition of the major translocator, PopB. Point mutations introduced into the PcrH-interacting region of PopD impede translocator-chaperone recognition in vitro and lead to impairment of bacterial cytotoxicity toward macrophages in vivo. These results indicate that T3SS translocator chaperones form binary complexes with their partner molecules, and the stability of their interaction regions must be strictly maintained to guarantee bacterial infectivity. The PcrH-PopD complex displays homologs among a number of pathogenic strains and could represent a novel, potential target for antibiotic development.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Citoplasma/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Espaço Intracelular/metabolismo , Macrófagos/microbiologia , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutagênese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/fisiologia , Sequências Repetitivas de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...