Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261738

RESUMO

We have cloned, overexpressed, purified, and characterized a 2-ketogluconate kinase (2-dehydrogluconokinase, EC 2.7.1.13) from Cupriavidus necator (Ralstonia eutropha) H16. Exploration of its substrate specificity revealed that three ketoacids (2-keto-3-deoxy-d-gluconate, 2-keto-d-gulonate, and 2-keto-3-deoxy-d-gulonate) with structures close to the natural substrate (2-keto-d-gluconate) were successfully phosphorylated at an efficiency lower than or comparable to 2-ketogluconate, as depicted by the measured kinetic constant values. Eleven aldo and keto monosaccharides of different chain lengths and stereochemistries were also assayed but not found to be substrates. 2-ketogluconate-6-phosphate was synthesized at a preparative scale and was fully characterized for the first time.


Assuntos
Cupriavidus necator/enzimologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Gluconatos/metabolismo , Fosforilação , Proteínas Quinases/química , Estabilidade Proteica , Especificidade por Substrato
2.
Chem Commun (Camb) ; 55(52): 7498-7501, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31187106

RESUMO

We explored a collection of 2-deoxyribose-5-phosphate aldolases (DERAs) from biodiversity for their nucleophile substrate promiscuity. The DERAs were screened using as nucleophiles propanone, propanal, cyclobutanone, cyclopentanone, dihydroxyacetone, and glycolaldehyde with l-glyceraldehyde-3-phosphate as an electrophile in aldol addition. A DERA from Arthrobacter chlorophenolicus (DERAArthro) efficiently allowed the synthesis of the corresponding aldol adducts in good yields, displaying complementarity in terms of configuration and substrate specificity with fructose-6-phosphate aldolase, the only previously known aldolase with a large nucleophile tolerance.


Assuntos
Aldeído Liases/metabolismo , Proteínas de Bactérias/metabolismo , Aldeído Liases/genética , Aldeídos/química , Aldeídos/metabolismo , Arthrobacter/enzimologia , Proteínas de Bactérias/genética , Biocatálise , Biodiversidade , Escherichia coli/enzimologia , Gliceraldeído 3-Fosfato/metabolismo , Especificidade por Substrato
3.
ACS Catal ; 8(9): 8804-8809, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30221031

RESUMO

Asymmetric aldol addition of simple aldehydes and ketones to electrophiles is a cornerstone reaction for the synthesis of unusual sugars and chiral building blocks. We investigated d-fructose-6-phosphate aldolase from E. coli (FSA) D6X variants as catalysts for the aldol additions of ethanal and nonfunctionalized linear and cyclic aliphatic ketones as nucleophiles to nonphosphorylated hydroxyaldehydes. Thus, addition of propanone, cyclobutanone, cyclopentanone, or ethanal to 3-hydroxypropanal or (S)- or (R)-3-hydroxybutanal catalyzed by FSA D6H and D6Q variants furnished rare deoxysugars in 8-77% isolated yields with high stereoselectivity (97:3 dr and >95% ee).

4.
Appl Microbiol Biotechnol ; 102(13): 5569-5583, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29728726

RESUMO

Most of the "repressor, open reading frame, kinase" (ROK) proteins already characterized so far, and exhibiting a kinase activity, take restrictedly D-glucose as substrate. By exploring the sequenced bacterial diversity, 61 ATP-dependent kinases belonging to the ROK family have been identified and experimentally assayed for the phosphorylation of hexoses. These kinases were mainly found to be thermotolerant and highly active toward D-mannose and D-fructose with notable activities toward D-tagatose. Among them, the ATP-dependent kinase from the mesophile Streptococcus mitis (named ScrKmitis) was biochemically characterized and its substrate spectrum further studied. This enzyme possessed impressive catalytic efficiencies toward D-mannose and D-fructose of 1.5 106 s-1 M-1 and 2.7 105 s-1 M-1, respectively, but also significant ones toward D-tagatose (3.5 102 s-1 M-1) and the unnatural monosaccharides D-altrose (1.1 104 s-1 M-1) and D-talose (3.4 102 s-1 M-1). Specific activities measured for all hexoses showed a high stereopreference for D- over L-series. As proof of concept, 8 hexoses were phosphorylated in moderate to good yields, some of them described for the first time like L-sorbose-5-phosphate unusually phosphorylated in position 5. Its thermotolerance, its wide pH tolerance (from 7 to 10), and temperature range (> 85% activity between 40 and 70 °C) open the way to applications in the enzymatic synthesis of monophosphorylated hexoses.


Assuntos
Frutoquinases/metabolismo , Streptococcus mitis/enzimologia , Fosforilação , Especificidade por Substrato , Açúcares/química , Açúcares/metabolismo , Temperatura
5.
Angew Chem Int Ed Engl ; 57(19): 5467-5471, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29542859

RESUMO

Dihydroxyacetone phosphate (DHAP)-dependent rhamnulose aldolases display an unprecedented versatility for ketones as electrophile substrates. We selected and characterized a rhamnulose aldolase from Bacteroides thetaiotaomicron (RhuABthet) to provide a proof of concept. DHAP was added as a nucleophile to several α-hydroxylated ketones used as electrophiles. This aldol addition was stereoselective and produced branched-chain monosaccharide adducts with a tertiary alcohol moiety. Several aldols were readily obtained in good to excellent yields (from 76 to 95 %). These results contradict the general view that aldehydes are the only electrophile substrates for DHAP-dependent aldolases and provide a new C-C bond-forming enzyme for stereoselective synthesis of tertiary alcohols.


Assuntos
Aldeído Liases/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Cetonas/metabolismo , Açúcares/metabolismo , Aldeído Liases/química , Bacteroides thetaiotaomicron/enzimologia , Fosfato de Di-Hidroxiacetona/química , Cetonas/química , Estrutura Molecular , Estereoisomerismo , Especificidade por Substrato , Açúcares/química
6.
Chem Commun (Camb) ; 53(39): 5465-5468, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28466909

RESUMO

Efficient bi-enzymatic cascades combining aldolases and α-transaminases were designed for the synthesis of γ-hydroxy-α-amino acids. These recycling cascades provide high stereoselectivity, atom economy, and an equilibrium shift of the transamination. l-syn or anti-4-hydroxyglutamic acid and d-anti-4,5-dihydroxynorvaline were thus prepared in 83-95% yield in one step from simple substrates.


Assuntos
Aldeído Liases/metabolismo , Aminoácidos/síntese química , Transaminases/metabolismo , Aldeído Liases/química , Estrutura Molecular , Estereoisomerismo , Transaminases/química
7.
Chemistry ; 23(21): 5005-5009, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28266745

RESUMO

d-Fructose-6-phosphate aldolase (FSA) was probed for extended nucleophile promiscuity by using a series of fluorogenic substrates to reveal retro-aldol activity. Four nucleophiles ethanal, propanone, butanone, and cyclopentanone were subsequently confirmed to be non-natural substrates in the synthesis direction using the wild-type enzyme and its D6H variant. This exceptional widening of the nucleophile substrate scope offers a rapid entry, in good yields and high stereoselectivity, to less oxygenated alkyl ketones and aldehydes, which was hitherto impossible.


Assuntos
Aldeído Liases/metabolismo , Aldeídos/química , Frutose-Bifosfato Aldolase/metabolismo , Frutosefosfatos/química , Cetonas/química , Aldeído Liases/química , Catálise , Frutose-Bifosfato Aldolase/química , Estrutura Molecular , Estereoisomerismo
8.
Chemistry ; 20(39): 12572-83, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25146467

RESUMO

D-Fructose-6-phosphate aldolase (FSA) is a unique catalyst for asymmetric cross-aldol additions of glycolaldehyde. A combination of a structure-guided approach of saturation mutagenesis, site-directed mutagenesis, and computational modeling was applied to construct a set of FSA variants that improved the catalytic efficiency towards glycolaldehyde dimerization up to 1800-fold. A combination of mutations in positions L107, A129, and A165 provided a toolbox of FSA variants that expand the synthetic possibilities towards the preparation of aldose-like carbohydrate compounds. The new FSA variants were applied as highly efficient catalysts for cross-aldol additions of glycolaldehyde to N-carbobenzyloxyaminoaldehydes to furnish between 80-98 % aldol adduct under optimized reaction conditions. Donor competition experiments showed high selectivity for glycolaldehyde relative to dihydroxyacetone or hydroxyacetone. These results demonstrate the exceptional malleability of the active site in FSA, which can be remodeled to accept a wide spectrum of donor and acceptor substrates with high efficiency and selectivity.


Assuntos
Acetaldeído/análogos & derivados , Aldeído Liases/genética , Aldeídos/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Engenharia de Proteínas , Acetaldeído/metabolismo , Aldeído Liases/metabolismo , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Frutosefosfatos/metabolismo , Modelos Moleculares , Engenharia de Proteínas/métodos
10.
J Org Chem ; 71(3): 894-902, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16438498

RESUMO

The synthesis of two enantiomerically pure iminosugars, analogues of 1-L-deoxynojirimycin (l-DNJ) and 1-D-deoxymannojirimycin (DMJ), was achieved using cyclic sulfate substituted isoxazoline derivatives. The piperidine ring was formed via the reduction of an isoxazoline into an amine which underwent a spontaneous intramolecular cyclization by reaction with the cyclic sulfate moiety. The nucleophilic attack of these two trisubstituted piperidines and morpholine on L- and D-erythritol-1,3-cyclic sulfates gave six new nitrogen analogues of salacinol. The inhibitory properties of the synthesized salacinol analogues were evaluated on several commercial glycosidases.


Assuntos
1-Desoxinojirimicina/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Nitrogênio/química , Álcoois Açúcares/química , Sulfatos/química , 1-Desoxinojirimicina/síntese química , Alquilação , Inibidores Enzimáticos/química , Glicosídeo Hidrolases/metabolismo , Hidroxilação , Estrutura Molecular , Morfolinas/química , Álcoois Açúcares/síntese química , Sulfatos/síntese química
11.
J Org Chem ; 69(26): 9310-2, 2004 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-15609974

RESUMO

Dihydroxyacetone phosphate (DHAP) was synthesized in high purity and yield in four steps starting from dihydroxyacetone dimer (DHA) (47% overall yield). DHA was converted into 2,2-dimethoxypropane-1,3-diol, which was desymmetrized by acetylation with lipase AK. The alcohol function was phosphorylated to give dibenzyl phosphate ester 4. From 4, two routes were investigated for large-scale synthesis of DHAP. First, acetate hydrolysis was performed prior to hydrogenolysis of the phosphate protective groups. The acetal hydrolysis was finally catalyzed by the phosphate group itself. Second, acetate and acetal hydrolysis were performed in one single step after hydrogenolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...