Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 21(4): e1004387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630802

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Estados Unidos/epidemiologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso de 80 Anos ou mais , Masculino
2.
Epidemics ; 47: 100753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492544

RESUMO

The COVID-19 pandemic led to an unprecedented demand for projections of disease burden and healthcare utilization under scenarios ranging from unmitigated spread to strict social distancing policies. In response, members of the Johns Hopkins Infectious Disease Dynamics Group developed flepiMoP (formerly called the COVID Scenario Modeling Pipeline), a comprehensive open-source software pipeline designed for creating and simulating compartmental models of infectious disease transmission and inferring parameters through these models. The framework has been used extensively to produce short-term forecasts and longer-term scenario projections of COVID-19 at the state and county level in the US, for COVID-19 in other countries at various geographic scales, and more recently for seasonal influenza. In this paper, we highlight how the flepiMoP has evolved throughout the COVID-19 pandemic to address changing epidemiological dynamics, new interventions, and shifts in policy-relevant model outputs. As the framework has reached a mature state, we provide a detailed overview of flepiMoP's key features and remaining limitations, thereby distributing flepiMoP and its documentation as a flexible and powerful tool for researchers and public health professionals to rapidly build and deploy large-scale complex infectious disease models for any pathogen and demographic setup.


Assuntos
COVID-19 , SARS-CoV-2 , Software , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Modelos Epidemiológicos
3.
medRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37961207

RESUMO

Importance: COVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Objective: To project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). Design: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. Setting: The entire United States. Participants: None. Exposure: Annually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measures: Ensemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. Results: From April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and Relevance: COVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease.

4.
medRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961651

RESUMO

Most infections with pandemic Vibrio cholerae are thought to result in subclinical disease and are not captured by surveillance. Previous estimates of the ratio of infections to clinical cases have varied widely (2 to 100). Understanding cholera epidemiology and immunity relies on the ability to translate between numbers of clinical cases and the underlying number of infections in the population. We estimated the infection incidence during the first months of an outbreak in a cholera-naive population using a Bayesian vibriocidal antibody titer decay model combining measurements from a representative serosurvey and clinical surveillance data. 3,880 suspected cases were reported in Grande Saline, Haiti, between 20 October 2010 and 6 April 2011 (clinical attack rate 18.4%). We found that more than 52.6% (95% Credible Interval (CrI) 49.4-55.7) of the population ≥2 years showed serologic evidence of infection, with a lower infection rate among children aged 2-4 years (35.5%; 95%CrI 24.2-51.6) compared with people ≥5 years (53.1%; 95%CrI 49.4-56.4). This estimated infection rate, nearly three times the clinical attack rate, with underdetection mainly seen in those ≥5 years, has likely impacted subsequent outbreak dynamics. Our findings show how seroincidence estimates improve understanding of links between cholera burden, transmission dynamics and immunity.

5.
Nat Commun ; 14(1): 7260, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985664

RESUMO

Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Incerteza
6.
medRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461674

RESUMO

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.

7.
Lancet Reg Health Am ; 17: 100398, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437905

RESUMO

Background: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. Methods: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. Findings: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. Interpretation: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Funding: Various (see acknowledgments).

8.
medRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168429

RESUMO

Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. Forecasting teams were asked to provide national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one through four weeks ahead for the 2021-22 and 2022-23 influenza seasons. Across both seasons, 26 teams submitted forecasts, with the submitting teams varying between seasons. Forecast skill was evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperformed the baseline model across forecast weeks and locations in 2021-22 and 12 out of 18 models in 2022-23. Averaging across all forecast targets, the FluSight ensemble was the 2nd most accurate model measured by WIS in 2021-22 and the 5th most accurate in the 2022-23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degraded over longer forecast horizons and during periods of rapid change. Current influenza forecasting efforts help inform situational awareness, but research is needed to address limitations, including decreased performance during periods of changing epidemic dynamics.

9.
PLoS Comput Biol ; 18(7): e1010237, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35802755

RESUMO

While campaigns of vaccination against SARS-CoV-2 are underway across the world, communities face the challenge of a fair and effective distribution of a limited supply of doses. Current vaccine allocation strategies are based on criteria such as age or risk. In the light of strong spatial heterogeneities in disease history and transmission, we explore spatial allocation strategies as a complement to existing approaches. Given the practical constraints and complex epidemiological dynamics, designing effective vaccination strategies at a country scale is an intricate task. We propose a novel optimal control framework to derive the best possible vaccine allocation for given disease transmission projections and constraints on vaccine supply and distribution logistics. As a proof-of-concept, we couple our framework with an existing spatially explicit compartmental COVID-19 model tailored to the Italian geographic and epidemiological context. We optimize the vaccine allocation on scenarios of unfolding disease transmission across the 107 provinces of Italy, from January to April 2021. For each scenario, the optimal solution significantly outperforms alternative strategies that prioritize provinces based on incidence, population distribution, or prevalence of susceptibles. Our results suggest that the complex interplay between the mobility network and the spatial heterogeneities implies highly non-trivial prioritization strategies for effective vaccination campaigns. Our work demonstrates the potential of optimal control for complex and heterogeneous epidemiological landscapes at country, and possibly global, scales.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Programas de Imunização , SARS-CoV-2 , Vacinação/métodos
10.
J R Soc Interface ; 19(188): 20210844, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259956

RESUMO

The fate of ongoing infectious disease outbreaks is predicted through reproduction numbers, defining the long-term establishment of the infection, and epidemicity indices, tackling the reactivity of the infectious pool to new contagions. Prognostic metrics of unfolding outbreaks are of particular importance when designing adaptive emergency interventions facing real-time assimilation of epidemiological evidence. Our aim here is twofold. First, we propose a novel form of the epidemicity index for the characterization of cholera epidemics in spatial models of disease spread. Second, we examine in hindsight the survey of infections, treatments and containment measures carried out for the now extinct 2010-2019 Haiti cholera outbreak, to suggest that magnitude and timing of non-pharmaceutical and vaccination interventions imply epidemiological responses recapped by the evolution of epidemicity indices. Achieving negative epidemicity greatly accelerates fading of infections and thus proves a worthwhile target of containment measures. We also show that, in our model, effective reproduction numbers and epidemicity indices are explicitly related. Therefore, providing an upper bound to the effective reproduction number (significantly lower than the unit threshold) warrants negative epidemicity and, in turn, a rapidly fading outbreak preventing coalescence of sparse local sub-threshold flare-ups.


Assuntos
Cólera , Epidemias , Número Básico de Reprodução , Cólera/epidemiologia , Cólera/prevenção & controle , Surtos de Doenças/prevenção & controle , Haiti/epidemiologia , Humanos , Controle de Infecções
11.
medRxiv ; 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35313593

RESUMO

Background: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings: Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions: Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.

12.
medRxiv ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34494030

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. WHAT IS ADDED BY THIS REPORT?: Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

13.
Nat Commun ; 12(1): 3560, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117244

RESUMO

Non-pharmaceutical interventions (NPIs) remain the only widely available tool for controlling the ongoing SARS-CoV-2 pandemic. We estimated weekly values of the effective basic reproductive number (Reff) using a mechanistic metapopulation model and associated these with county-level characteristics and NPIs in the United States (US). Interventions that included school and leisure activities closure and nursing home visiting bans were all associated with a median Reff below 1 when combined with either stay at home orders (median Reff 0.97, 95% confidence interval (CI) 0.58-1.39) or face masks (median Reff 0.97, 95% CI 0.58-1.39). While direct causal effects of interventions remain unclear, our results suggest that relaxation of some NPIs will need to be counterbalanced by continuation and/or implementation of others.


Assuntos
COVID-19/prevenção & controle , COVID-19/transmissão , Política de Saúde , Controle de Infecções/métodos , Número Básico de Reprodução , COVID-19/epidemiologia , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Atividades de Lazer , Máscaras , História Natural , Pandemias , Quarentena , SARS-CoV-2/isolamento & purificação , Instituições Acadêmicas , Estados Unidos/epidemiologia
14.
Water Res ; 200: 117252, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048984

RESUMO

Wastewater-based epidemiology (WBE) has been shown to coincide with, or anticipate, confirmed COVID-19 case numbers. During periods with high test positivity rates, however, case numbers may be underreported, whereas wastewater does not suffer from this limitation. Here we investigated how the dynamics of new COVID-19 infections estimated based on wastewater monitoring or confirmed cases compare to true COVID-19 incidence dynamics. We focused on the first pandemic wave in Switzerland (February to April, 2020), when test positivity ranged up to 26%. SARS-CoV-2 RNA loads were determined 2-4 times per week in three Swiss wastewater treatment plants (Lugano, Lausanne and Zurich). Wastewater and case data were combined with a shedding load distribution and an infection-to-case confirmation delay distribution, respectively, to estimate infection incidence dynamics. Finally, the estimates were compared to reference incidence dynamics determined by a validated compartmental model. Incidence dynamics estimated based on wastewater data were found to better track the timing and shape of the reference infection peak compared to estimates based on confirmed cases. In contrast, case confirmations provided a better estimate of the subsequent decline in infections. Under a regime of high-test positivity rates, WBE thus provides critical information that is complementary to clinical data to monitor the pandemic trajectory.


Assuntos
COVID-19 , Águas Residuárias , Humanos , Incidência , RNA Viral , SARS-CoV-2 , Suíça/epidemiologia
15.
MMWR Morb Mortal Wkly Rep ; 70(19): 719-724, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33988185

RESUMO

After a period of rapidly declining U.S. COVID-19 incidence during January-March 2021, increases occurred in several jurisdictions (1,2) despite the rapid rollout of a large-scale vaccination program. This increase coincided with the spread of more transmissible variants of SARS-CoV-2, the virus that causes COVID-19, including B.1.1.7 (1,3) and relaxation of COVID-19 prevention strategies such as those for businesses, large-scale gatherings, and educational activities. To provide long-term projections of potential trends in COVID-19 cases, hospitalizations, and deaths, COVID-19 Scenario Modeling Hub teams used a multiple-model approach comprising six models to assess the potential course of COVID-19 in the United States across four scenarios with different vaccination coverage rates and effectiveness estimates and strength and implementation of nonpharmaceutical interventions (NPIs) (public health policies, such as physical distancing and masking) over a 6-month period (April-September 2021) using data available through March 27, 2021 (4). Among the four scenarios, an accelerated decline in NPI adherence (which encapsulates NPI mandates and population behavior) was shown to undermine vaccination-related gains over the subsequent 2-3 months and, in combination with increased transmissibility of new variants, could lead to surges in cases, hospitalizations, and deaths. A sharp decline in cases was projected by July 2021, with a faster decline in the high-vaccination scenarios. High vaccination rates and compliance with public health prevention measures are essential to control the COVID-19 pandemic and to prevent surges in hospitalizations and deaths in the coming months.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/epidemiologia , COVID-19/terapia , Hospitalização/estatística & dados numéricos , Modelos Estatísticos , Política Pública , Vacinação/estatística & dados numéricos , COVID-19/mortalidade , COVID-19/prevenção & controle , Previsões , Humanos , Máscaras , Distanciamento Físico , Estados Unidos/epidemiologia
16.
Sci Rep ; 11(1): 7534, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824358

RESUMO

Coronavirus disease 2019 (COVID-19) has caused strain on health systems worldwide due to its high mortality rate and the large portion of cases requiring critical care and mechanical ventilation. During these uncertain times, public health decision makers, from city health departments to federal agencies, sought the use of epidemiological models for decision support in allocating resources, developing non-pharmaceutical interventions, and characterizing the dynamics of COVID-19 in their jurisdictions. In response, we developed a flexible scenario modeling pipeline that could quickly tailor models for decision makers seeking to compare projections of epidemic trajectories and healthcare impacts from multiple intervention scenarios in different locations. Here, we present the components and configurable features of the COVID Scenario Pipeline, with a vignette detailing its current use. We also present model limitations and active areas of development to meet ever-changing decision maker needs.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Simulação por Computador , Epidemias , Humanos , Dinâmica Populacional , Saúde Pública , Risco , SARS-CoV-2/isolamento & purificação , Software
17.
Biochem Biophys Res Commun ; 538: 253-258, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33342517

RESUMO

To monitor local and global COVID-19 outbreaks, and to plan containment measures, accessible and comprehensible decision-making tools need to be based on the growth rates of new confirmed infections, hospitalization or case fatality rates. Growth rates of new cases form the empirical basis for estimates of a variety of reproduction numbers, dimensionless numbers whose value, when larger than unity, describes surging infections and generally worsening epidemiological conditions. Typically, these determinations rely on noisy or incomplete data gained over limited periods of time, and on many parameters to estimate. This paper examines how estimates from data and models of time-evolving reproduction numbers of national COVID-19 infection spread change by using different techniques and assumptions. Given the importance acquired by reproduction numbers as diagnostic tools, assessing their range of possible variations obtainable from the same epidemiological data is relevant. We compute control reproduction numbers from Swiss and Italian COVID-19 time series adopting both data convolution (renewal equation) and a SEIR-type model. Within these two paradigms we run a comparative analysis of the possible inferences obtained through approximations of the distributions typically used to describe serial intervals, generation, latency and incubation times, and the delays between onset of symptoms and notification. Our results suggest that estimates of reproduction numbers under these different assumptions may show significant temporal differences, while the actual variability range of computed values is rather small.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Número Básico de Reprodução , Humanos , Modelos Estatísticos , Processos Estocásticos
18.
Lancet Glob Health ; 8(8): e1081-e1089, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32710864

RESUMO

BACKGROUND: Cholera was introduced into Haiti in 2010. Since then, more than 820 000 cases and nearly 10 000 deaths have been reported. Oral cholera vaccine (OCV) is safe and effective, but has not been seen as a primary tool for cholera elimination due to a limited period of protection and constrained supplies. Regionally, epidemic cholera is contained to the island of Hispaniola, and the lowest numbers of cases since the epidemic began were reported in 2019. Hence, Haiti may represent a unique opportunity to eliminate cholera with OCV. METHODS: In this modelling study, we assessed the probability of elimination, time to elimination, and percentage of cases averted with OCV campaign scenarios in Haiti through simulations from four modelling teams. For a 10-year period from January 19, 2019, to Jan 13, 2029, we compared a no vaccination scenario with five OCV campaign scenarios that differed in geographical scope, coverage, and rollout duration. Teams used weekly department-level reports of suspected cholera cases from the Haiti Ministry of Public Health and Population to calibrate the models and used common vaccine-related assumptions, but other model features were determined independently. FINDINGS: Among campaigns with the same vaccination coverage (70% fully vaccinated), the median probability of elimination after 5 years was 0-18% for no vaccination, 0-33% for 2-year campaigns focused in the two departments with the highest historical incidence, 0-72% for three-department campaigns, and 35-100% for nationwide campaigns. Two-department campaigns averted a median of 12-58% of infections, three-department campaigns averted 29-80% of infections, and national campaigns averted 58-95% of infections. Extending the national campaign to a 5-year rollout (compared to a 2-year rollout), reduced the probability of elimination to 0-95% and the proportion of cases averted to 37-86%. INTERPRETATION: Models suggest that the probability of achieving zero transmission of Vibrio cholerae in Haiti with current methods of control is low, and that bolder action is needed to promote elimination of cholera from the region. Large-scale cholera vaccination campaigns in Haiti would offer the opportunity to synchronise nationwide immunity, providing near-term population protection while improvements to water and sanitation promote long-term cholera elimination. FUNDING: Bill & Melinda Gates Foundation, Global Good Fund, Institute for Disease Modeling, Swiss National Science Foundation, and US National Institutes of Health.


Assuntos
Vacinas contra Cólera/administração & dosagem , Cólera/prevenção & controle , Erradicação de Doenças/métodos , Programas de Imunização , Administração Oral , Cólera/epidemiologia , Haiti/epidemiologia , Humanos , Incidência , Modelos Biológicos , Vacinação/estatística & dados numéricos
19.
Swiss Med Wkly ; 150: w20295, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32472939

RESUMO

Following the rapid dissemination of COVID-19 cases in Switzerland, large-scale non-pharmaceutical interventions (NPIs) were implemented by the cantons and the federal government between 28 February and 20 March 2020. Estimates of the impact of these interventions on SARS-CoV-2 transmission are critical for decision making in this and future outbreaks. We here aim to assess the impact of these NPIs on disease transmission by estimating changes in the basic reproduction number (R0) at national and cantonal levels in relation to the timing of these NPIs. We estimated the time-varying R0 nationally and in eleven cantons by fitting a stochastic transmission model explicitly simulating within-hospital dynamics. We used individual-level data from more than 1000 hospitalised patients in Switzerland and public daily reports of hospitalisations and deaths. We estimated the national R0 to be 2.8 (95% confidence interval 2.1–3.8) at the beginning of the epidemic. Starting from around 7 March, we found a strong reduction in time-varying R0 with a 86% median decrease (95% quantile range [QR] 79–90%) to a value of 0.40 (95% QR 0.3–0.58) in the period of 29 March to 5 April. At the cantonal level, R0 decreased over the course of the epidemic between 53% and 92%. Reductions in time-varying R0 were synchronous with changes in mobility patterns as estimated through smartphone activity, which started before the official implementation of NPIs. We inferred that most of the reduction of transmission is attributable to behavioural changes as opposed to natural immunity, the latter accounting for only about 4% of the total reduction in effective transmission. As Switzerland considers relaxing some of the restrictions of social mixing, current estimates of time-varying R0 well below one are promising. However, as of 24 April 2020, at least 96% (95% QR 95.7–96.4%) of the Swiss population remains susceptible to SARS-CoV-2. These results warrant a cautious relaxation of social distance practices and close monitoring of changes in both the basic and effective reproduction numbers.


Assuntos
Betacoronavirus/isolamento & purificação , Controle de Doenças Transmissíveis , Infecções por Coronavirus , Transmissão de Doença Infecciosa , Pandemias/estatística & dados numéricos , Pneumonia Viral , COVID-19 , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/organização & administração , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis Emergentes/prevenção & controle , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Humanos , Modelos Estatísticos , Mortalidade , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2 , Conglomerados Espaço-Temporais , Processos Estocásticos
20.
Acta Trop ; 190: 235-243, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30465744

RESUMO

The correlation between cholera epidemics and climatic drivers, in particular seasonal tropical rainfall, has been studied in a variety of contexts owing to its documented relevance. Several mechanistic models of cholera transmission have included rainfall as a driver by focusing on two possible transmission pathways: either by increasing exposure to contaminated water (e.g. due to worsening sanitary conditions during water excess), or water contamination by freshly excreted bacteria (e.g. due to washout of open-air defecation sites or overflows). Our study assesses the explanatory power of these different modeling structures by formal model comparison using deterministic and stochastic models of the type susceptible-infected-recovered-bacteria (SIRB). The incorporation of rainfall effects is generalized using a nonlinear function that can increase or decrease the relative importance of the large precipitation events. Our modelling framework is tested against the daily epidemiological data collected during the 2015 cholera outbreak within the urban context of Juba, South Sudan. This epidemic is characterized by a particular intra-seasonal double peak on the incidence in apparent relation with particularly strong rainfall events. Our results show that rainfall-based models in both their deterministic and stochastic formulations outperform models that do not account for rainfall. In fact, classical SIRB models are not able to reproduce the second epidemiological peak, thus suggesting that it was rainfall-driven. Moreover we found stronger support across model types for rainfall acting on increased exposure rather than on exacerbated water contamination. Although these results are context-specific, they stress the importance of a systematic and comprehensive appraisal of transmission pathways and their environmental forcings when embarking in the modelling of epidemic cholera.


Assuntos
Cólera/transmissão , Chuva , Cólera/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Epidemias , Humanos , Estações do Ano , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...