Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(5): 3047-3061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38056571

RESUMO

Milk citrate is regarded as an early biomarker of negative energy balance in dairy cows during early lactation and serves as a suitable candidate phenotype for genomic selection due to its wide availability across a large number of cows through milk mid-infrared spectra prediction. However, its genetic background is not well known. Therefore, the objectives of this study were to (1) analyze the genetic parameters of milk citrate; (2) identify genomic regions associated with milk citrate; and (3) analyze the functional annotation of candidate genes and quantitative trait loci (QTL) related to milk citrate in Walloon Holstein cows. In total, 134,517 test-day milk-citrate phenotypes (mmol/L) collected within the first 50 d in milk on 52,198 Holstein cows were used. These milk-citrate phenotypes, predicted by milk mid-infrared spectra, were divided into 3 traits according to the first (citrate1), second (citrate2), and third to fifth parity (citrate3+). Genomic information for 566,170 SNPs was available for 4,479 animals. A multiple-trait repeatability model was used to estimate genetic parameters. A single-step GWAS was used to identify candidate genes for citrate and post-GWAS analysis was done to investigate the relationship and function of the identified candidate genes. The heritabilities estimated for citrate1, citrate2, and citrate3+ were 0.40, 0.37, and 0.35, respectively. The genetic correlations among the 3 traits ranged from 0.98 to 0.99. The genomic correlations among the 3 traits were also close to 1.00 across the genomic regions (1 Mb) in the whole genome, which means that citrate can be considered as a single trait in the first 5 parities. In total, 603 significant SNPs located on 3 genomic regions (chromosome 7, 68.569-68.575 Mb; chromosome 14, 0.15-1.90 Mb; and chromosome 20, 54.00-64.28 Mb), were identified to be associated with milk citrate. We identified 89 candidate genes including GPT, ANKH, PPP1R16A, and 32 QTL reported in the literature related to the identified significant SNPs. These identified QTL were mainly reported associated with milk fatty acids and metabolic diseases in dairy cows. This study suggests that milk citrate in Holstein cows is highly heritable and has the potential to be used as an early proxy for the negative energy balance of Holstein cows in a breeding objective.

2.
J Dairy Sci ; 107(5): 3006-3019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101745

RESUMO

The aims of this study were to estimate genetic parameters and to identify genomic regions associated with eating time (ET) and rumination time (RUT) in Holstein dairy cows. Genetic correlations among ET, RUT, and milk yield traits were also estimated. The data were collected from 2019 to 2022 in 6 dairy herds located in the Walloon Region of Belgium. The dataset consisted of daily ET and RUT records on 284 Holstein cows, from which 41 cows had records only for the first parity (P1), 101 cows had records from both the first and second parities, and 142 cows had records only for the second parity (P2). The number of daily ET and RUT records in the P1 and P2 cows were 18,569 (on 142 cows) and 34,464 (on 243 cows), respectively. Data on 28,994 SNPs located on 29 Bos taurus autosomes (BTA) of 747 animals (435 males) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by each 20-SNP sliding window (with an average size of 1.52 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Mean (standard deviation; SD) averaged daily ET and RUT were 327.0 (85.66) and 559.4 (77.69) min/d for cows in P1 and 316.0 (82.24) and 574.2 (75.42) min/d for cows in P2, respectively. Mean (standard deviation; SD) heritability estimates for daily ET and RUT were 0.42 (0.09) and 0.45 (0.06) for cows in P1 and 0.45 (0.04) and 0.43 (0.02) for cows in P2, respectively. Mean (SD) daily genetic correlations between daily ET and RUT were 0.27 (0.07) for P1 and 0.34 (0.08) for P2. Genome-wide association analyses identified 6 genomic regions distributed over 5 chromosomes (BTA1, BTA4, BTA11, 2 regions of BTA14, and BTA17) associated with ET or RUT. The findings of this study increase our preliminary understanding of the genetic background of feeding behavior in dairy cows; however, larger datasets are needed to determine whether ET and RUT might have the potential to be used in selection programs.


Assuntos
Estudo de Associação Genômica Ampla , Lactação , Animais , Bovinos/genética , Feminino , Masculino , Gravidez , Teorema de Bayes , Genoma , Estudo de Associação Genômica Ampla/veterinária , Lactação/genética , Leite , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...