Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(4): 046301, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335351

RESUMO

We identify the key features of Kardar-Parisi-Zhang (KPZ) universality class in the fluctuations of the wave density logarithm in a two-dimensional Anderson localized wave packet. In our numerical analysis, the fluctuations are found to exhibit an algebraic scaling with distance characterized by an exponent of 1/3, and a Tracy-Widom probability distribution of the fluctuations. Additionally, within a directed polymer picture of KPZ physics, we identify the dominant contribution of a directed path to the wave packet density and find that its transverse fluctuations are characterized by a roughness exponent 2/3. Leveraging on this connection with KPZ physics, we verify that an Anderson localized wave packet in 2D exhibits a stretched exponential correction to its well-known exponential localization.

2.
Phys Rev E ; 108(5-1): 054127, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115526

RESUMO

Long-range hoppings in quantum disordered systems are known to yield quantum multifractality, the features of which can go beyond the characteristic properties associated with an Anderson transition. Indeed, critical dynamics of long-range quantum systems can exhibit anomalous dynamical behaviors distinct from those at the Anderson transition in finite dimensions. In this paper, we propose a phenomenological model of wave packet expansion in long-range hopping systems. We consider both their multifractal properties and the algebraic fat tails induced by the long-range hoppings. Using this model, we analytically derive the dynamics of moments and inverse participation ratios of the time-evolving wave packets, in connection with the multifractal dimension of the system. To validate our predictions, we perform numerical simulations of a Floquet model that is analogous to the power law random banded matrix ensemble. Unlike the Anderson transition in finite dimensions, the dynamics of such systems cannot be adequately described by a single parameter scaling law that solely depends on time. Instead, it becomes crucial to establish scaling laws involving both the finite size and the time. Explicit scaling laws for the observables under consideration are presented. Our findings are of considerable interest towards applications in the fields of many-body localization and Anderson localization on random graphs, where long-range effects arise due to the inherent topology of the Hilbert space.

3.
Phys Rev Lett ; 126(17): 174102, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988390

RESUMO

We present an extension of the chaos-assisted tunneling mechanism to spatially periodic lattice systems. We demonstrate that driving such lattice systems in an intermediate regime of modulation maps them onto tight-binding Hamiltonians with chaos-induced long-range hoppings t_{n}∝1/n between sites at a distance n. We provide a numerical demonstration of the robustness of the results and derive an analytical prediction for the hopping term law. Such systems can thus be used to enlarge the scope of quantum simulations to experimentally realize long-range models of condensed matter.

4.
Nat Commun ; 9(1): 1382, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643368

RESUMO

Anderson localization, the absence of diffusion in disordered media, draws its origins from the destructive interference between multiple scattering paths. The localization properties of disordered systems are expected to be dramatically sensitive to their symmetries. So far, this question has been little explored experimentally. Here we investigate the realization of an artificial gauge field in a synthetic (temporal) dimension of a disordered, periodically driven quantum system. Tuning the strength of this gauge field allows us to control the parity-time symmetry properties of the system, which we probe through the experimental observation of three symmetry-sensitive signatures of localization. The first two are the coherent backscattering, marker of weak localization, and the recently predicted coherent forward scattering, genuine interferential signature of Anderson localization. The third is the direct measurement of the ß(g) scaling function in two different symmetry classes, allowing to demonstrate its universality and the one-parameter scaling hypothesis.

5.
Phys Rev Lett ; 118(18): 184101, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28524683

RESUMO

We report on the observation of the coherent enhancement of the return probability ["enhanced return to the origin" (ERO)] in a periodically kicked cold-atom gas. By submitting an atomic wave packet to a pulsed, periodically shifted, laser standing wave, we induce an oscillation of ERO in time that is explained in terms of a periodic, reversible dephasing in the weak-localization interference sequences responsible for ERO. Monitoring the temporal decay of ERO, we exploit its quantum-coherent nature to quantify the decoherence rate of the atomic system.

6.
Phys Rev E ; 96(4-1): 040201, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347601

RESUMO

Tunneling between two classically disconnected regular regions can be strongly affected by the presence of a chaotic sea in between. This phenomenon, known as chaos-assisted tunneling, gives rise to large fluctuations of the tunneling rate. Here we study chaos-assisted tunneling in the presence of Anderson localization effects in the chaotic sea. Our results show that the standard tunneling rate distribution is strongly modified by localization, going from the Cauchy distribution in the ergodic regime to a log-normal distribution in the strongly localized case, for both a deterministic and a disordered model. We develop a single-parameter scaling description which accurately describes the numerical data. Several possible experimental implementations using cold atoms, photonic lattices, or microwave billiards are discussed.

7.
Phys Rev Lett ; 114(15): 155301, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933319

RESUMO

We investigate the superfluid (SF) to Bose-glass (BG) quantum phase transition using extensive quantum Monte Carlo simulations of two-dimensional hard-core bosons in a random box potential. T=0 critical properties are studied by thorough finite-size scaling of condensate and SF densities, both vanishing at the same critical disorder Wc=4.80(5). Our results give the following estimates for the critical exponents: z=1.85(15), ν=1.20(12), η=-0.40(15). Furthermore, the probability distribution of the SF response P(lnρSF) displays striking differences across the transition: while it narrows with increasing system sizes L in the SF phase, it broadens in the BG regime, indicating an absence of self-averaging, and at the critical point P(lnρSF+zlnL) is scale invariant. Finally, high-precision measurements of the local density rule out a percolation picture for the SF-BG transition.

8.
Phys Rev Lett ; 106(15): 156810, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568601

RESUMO

We study an electron interferometer formed with a quantum point contact and a scanning probe tip in a two-dimensional electron gas. The images giving the conductance as a function of the tip position exhibit fringes spaced by half the Fermi wavelength. For a contact opened at the edges of a quantized conductance plateau, the fringes are enhanced as the temperature T increases and can persist beyond the thermal length l(T). This unusual effect is explained by assuming a simplified model: The fringes are mainly given by a contribution which vanishes when T→0 and has a decay characterized by a T-independent scale.

9.
Phys Rev Lett ; 105(9): 090601, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20868146

RESUMO

Using a three-frequency one-dimensional kicked rotor experimentally realized with a cold atomic gas, we study the transport properties at the critical point of the metal-insulator Anderson transition. We accurately measure the time evolution of an initially localized wave packet and show that it displays at the critical point a scaling invariance characteristic of this second-order phase transition. The shape of the momentum distribution at the critical point is found to be in excellent agreement with the analytical form deduced from the self-consistent theory of localization.

10.
Phys Rev Lett ; 101(25): 255702, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113725

RESUMO

We realize experimentally an atom-optics quantum-chaotic system, the quasiperiodic kicked rotor, which is equivalent to a 3D disordered system that allows us to demonstrate the Anderson metal-insulator transition. Sensitive measurements of the atomic wave function and the use of finite-size scaling techniques make it possible to extract both the critical parameters and the critical exponent of the transition, the latter being in good agreement with the value obtained in numerical simulations of the 3D Anderson model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...