Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38904912

RESUMO

Quantitative predictive modeling of cancer growth, progression, and individual response to therapy is a rapidly growing field. Researchers from mathematical modeling, systems biology, pharmaceutical industry, and regulatory bodies, are collaboratively working on predictive models that could be applied for drug development and, ultimately, the clinical management of cancer patients. A plethora of modeling paradigms and approaches have emerged, making it challenging to compile a comprehensive review across all subdisciplines. It is therefore critical to gauge fundamental design aspects against requirements, and weigh opportunities and limitations of the different model types. In this review, we discuss three fundamental types of cancer models: space-structured models, ecological models, and immune system focused models. For each type, it is our goal to illustrate which mechanisms contribute to variability and heterogeneity in cancer growth and response, so that the appropriate architecture and complexity of a new model becomes clearer. We present the main features addressed by each of the three exemplary modeling types through a subjective collection of literature and illustrative exercises to facilitate inspiration and exchange, with a focus on providing a didactic rather than exhaustive overview. We close by imagining a future multi-scale model design to impact critical decisions in oncology drug development.

2.
J Math Biol ; 82(5): 39, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33768404

RESUMO

The misconformation and aggregation of the protein Amyloid-Beta (A[Formula: see text]) is a key event in the propagation of Alzheimer's Disease (AD). Different types of assemblies are identified, with long fibrils and plaques deposing during the late stages of AD. In the earlier stages, the disease spread is driven by the formation and the spatial propagation of small amorphous assemblies called oligomers. We propose a model dedicated to studying those early stages, in the vicinity of a few neurons and after a polymer seed has been formed. We build a reaction-diffusion model, with a Becker-Döring-like system that includes fragmentation and size-dependent diffusion. We hereby establish the theoretical framework necessary for the proper use of this model, by proving the existence of solutions using a fixed point method.


Assuntos
Doença de Alzheimer , Modelos Biológicos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Humanos , Neurônios , Placa Amiloide
3.
PLoS Comput Biol ; 16(5): e1007647, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453794

RESUMO

The use of yeast systems to study the propagation of prions and amyloids has emerged as a crucial aspect of the global endeavor to understand those mechanisms. Yeast prion systems are intrinsically multi-scale: the molecular chemical processes are indeed coupled to the cellular processes of cell growth and division to influence phenotypical traits, observable at the scale of colonies. We introduce a novel modeling framework to tackle this difficulty using impulsive differential equations. We apply this approach to the [PSI+] yeast prion, which is associated with the misconformation and aggregation of Sup35. We build a model that reproduces and unifies previously conflicting experimental observations on [PSI+] and thus sheds light onto characteristics of the intracellular molecular processes driving aggregate replication. In particular our model uncovers a kinetic barrier for aggregate replication at low densities, meaning the change between prion or prion-free phenotype is a bi-stable transition. This result is based on the study of prion curing experiments, as well as the phenomenon of colony sectoring, a phenotype which is often ignored in experimental assays and has never been modeled. Furthermore, our results provide further insight into the effect of guanidine hydrochloride (GdnHCl) on Sup35 aggregates. To qualitatively reproduce the GdnHCl curing experiment, aggregate replication must not be completely inhibited, which suggests the existence of a mechanism different than Hsp104-mediated fragmentation. Those results are promising for further development of the [PSI+] model, but also for extending the use of this novel framework to other yeast prion or amyloid systems.


Assuntos
Proteínas Priônicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Amiloide/química , Simulação por Computador , Guanidina/farmacologia , Proteínas de Choque Térmico/metabolismo , Cinética , Modelos Biológicos , Modelos Teóricos , Fatores de Terminação de Peptídeos/metabolismo , Fenótipo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Math Biol ; 78(1-2): 465-495, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30116882

RESUMO

Prions are proteins capable of adopting misfolded conformations and transmitting these conformations to other normally folded proteins. Prions are most commonly known for causing fatal neurodegenerative diseases in mammals but are also associated with several harmless phenotypes in yeast. A distinct feature of prion propagation is the existence of different phenotypical variants, called strains. It is widely accepted that these strains correspond to different conformational states of the protein, but the mechanisms driving their interactions remain poorly understood. This study uses mathematical modeling to provide insight into this problem. We show that the classical model of prion dynamics allows at most one conformational strain to stably propagate. In order to conform to biological observations of strain coexistence and co-stability, we develop an extension of the classical model by introducing a novel prion species consistent with biological studies. Qualitative analysis of this model reveals a new variety of behavior. Indeed, it allows for stable coexistence of different strains in a wide parameter range, and it also introduces intricate initial condition dependency. These new behaviors are consistent with experimental observations of prions in both mammals and yeast. As such, our model provides a valuable tool for investigating the underlying mechanisms of prion propagation and the link between prion strains and strain specific phenotypes. The consideration of a novel prion species brings a change in perspective on prion biology and we use our model to generate hypotheses about prion infectivity.


Assuntos
Modelos Biológicos , Príons/química , Príons/metabolismo , Animais , Biologia Computacional , Simulação por Computador , Humanos , Cinética , Conceitos Matemáticos , Modelos Moleculares , Fenótipo , Doenças Priônicas/etiologia , Doenças Priônicas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Deficiências na Proteostase/etiologia , Deficiências na Proteostase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...