Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 11: 1295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013949

RESUMO

The subfamily Bromelioideae is one of the most diverse groups among the neotropical Bromeliaceae. Previously, key innovations have been identified which account for the extraordinary radiation and species richness of this subfamily, especially in the so-called core Bromelioideae. However, in order to extend our understanding of the evolutionary mechanisms, the genomic mechanisms (e.g. polyploidy, dysploidy) that potentially underlie this accelerated speciation also need to be tested. Here, using PI and DAPI staining and flow cytometry we estimated genome size and GC content of 231 plants covering 30 genera and 165 species and combined it with published data. The evolutionary and ecological significance of all three genomic characters was tested within a previously generated dated phylogenetic framework using ancestral state reconstructions, comparative phylogenetic methods, and multiple regressions with climatic variables. The absolute genome size (2C) of Bromelioideae varied between 0.59 and 4.11 pg, and the GC content ranged between 36.73 and 41.43%. The monoploid genome sizes (Cx) differed significantly between core and early diverging lineages. The occurrence of dysploidy and polyploidy was, with few exceptions, limited to the phylogenetically isolated early diverging tank-less lineages. For Cx and GC content Ornstein-Uhlenbeck models outperformed the Brownian motion models suggesting adaptive potential linked to the temperature conditions. 2C-values revealed different rates of evolution in core and early diverging lineages also related to climatic conditions. Our results suggest that polyploidy is not associated with higher net diversification and fast radiation in core bromelioids. On the other hand, although coupled with higher extinction rates, dysploidy, polyploidy, and resulting genomic reorganizations might have played a role in the survival of the early diverging bromelioids in hot and arid environments.

3.
BMC Plant Biol ; 20(1): 111, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164546

RESUMO

BACKGROUND: The angiosperm family Bromeliaceae comprises over 3.500 species characterized by exceptionally high morphological and ecological diversity, but a very low genetic variation. In many genera, plants are vegetatively very similar which makes determination of non flowering bromeliads difficult. This is particularly problematic with living collections where plants are often cultivated over decades without flowering. DNA barcoding is therefore a very promising approach to provide reliable and convenient assistance in species determination. However, the observed low genetic variation of canonical barcoding markers in bromeliads causes problems. RESULT: In this study the low-copy nuclear gene Agt1 is identified as a novel DNA barcoding marker suitable for molecular identification of closely related bromeliad species. Combining a comparatively slowly evolving exon sequence with an adjacent, genetically highly variable intron, correctly matching MegaBLAST based species identification rate was found to be approximately double the highest rate yet reported for bromeliads using other barcode markers. CONCLUSION: In the present work, we characterize Agt1 as a novel plant DNA barcoding marker to be used for barcoding of bromeliads, a plant group with low genetic variation. Moreover, we provide a comprehensive marker sequence dataset for further use in the bromeliad research community.


Assuntos
Bromeliaceae/genética , Código de Barras de DNA Taxonômico , DNA de Plantas/genética , Proteínas de Plantas/genética , Bromeliaceae/classificação
4.
Mol Phylogenet Evol ; 107: 152-165, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27989631

RESUMO

Cryptanthus comprises 72 species endemic to eastern Brazil with a center of diversity in the Atlantic Forest. The majority of the species are threatened due to habitat loss. We reconstructed phylogenetic relationships in Cryptanthus based on amplified fragment length polymorphisms (AFLP) including 48 species and 109 accessions. The Bayesian phylogenetic analysis revealed four major lineages in Cryptanthus and provided further evidence for the paraphyly of subgen. Hoplocryptanthus, while subgenus Cryptanthus was resolved as monophyletic. Monophyly of previously recognized morphological species groups at sectional level could not be confirmed. Based on the phylogenetic reconstruction we inferred the evolution of the sex system in Cryptanthus via maximum likelihood (ML) ancestral character reconstruction. Homoecy, the possession of hermaphrodite flowers only, was reconstructed as the ancestral state in the genus and characterizes three of the four main lineages within Cryptanthus. Andromonoecy, the possession of male and hermaphrodite flowers on the same plant, evolved only once and represents a synapomorphy of the fourth main lineage, C. subgen. Cryptanthus. The ancestral biome analysis reconstructed Cerrado (semiarid scrublands and forests) and campos rupestres (rock fields) as the most likely ancestral biomes for the genus. A shift to the Atlantic Forest biome was reconstructed to have occurred twice, in the ancestor of the first diverging lineage within the genus and in the ancestor of the C. subgen. Cryptanthus clade. A shift to the Caatinga (tropical dryland savanna) and one reversal to Cerrado (campos rupestres - rock fields) was reconstructed to have occurred once, in C. bahianus and C. arelii, respectively. The ancestral biome reconstruction indicates a high degree of niche conservatism within Cryptanthus with rare biome shifts throughout the evolution of the genus. Further, our results imply that the current infrageneric taxonomy of Cryptanthus is problematic and requires revision.


Assuntos
Bromeliaceae/classificação , Filogenia , Filogeografia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Bromeliaceae/genética , Ecossistema , Geografia , Funções Verossimilhança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...