Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367427

RESUMO

Selenium is an essential trace element for most organisms, protecting cells from oxidative damage caused by free radicals and serving as an adjunctive treatment for non-alcoholic fatty liver disease (NAFLD). In this study, We used the lactic acid bacterium Lactobacillus acidophilus HN23 to reduce tetra-valent sodium selenite into particulate matter, and analyzed it through inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), X-ray diffraction energy dispersive spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). We found that it consisted of selenium nanoparticles (SeNPs) with a mass composition of 65.8 % zero-valent selenium and some polysaccharide and polypeptide compounds, with particle sizes ranging from 60 to 300 nm. We also detected that SeNPs were much less toxic to cells than selenite. We further used free fatty acids (FFA)-induced WRL68 fatty liver cell model to study the therapeutic effect of SeNPs on NAFLD. The results show that SeNPs are more effective than selenite in reducing lipid deposition, increasing mitochondrial membrane potential (MMP) and antioxidant capacity of WRL68 cells, which is attributed to the chemical valence state of selenium and organic composition in SeNPs. In conclusion, SeNPs produced by probiotics L. acidophilus had the potential to alleviate NAFLD by reducing hepatocyte lipid deposition and oxidative damage. This study may open a new avenue for SeNPs drug development to treat NAFLD.


Assuntos
Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Selênio , Humanos , Selênio/farmacologia , Selênio/química , Lactobacillus acidophilus/metabolismo , Nanopartículas/química , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Lipídeos
2.
Animals (Basel) ; 12(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35405903

RESUMO

This research is aimed at the influence of different doses of lithium ascorbate on pigs' diet estimation, at farrowing sows' antioxidant status increase, and at lipid peroxidation product level decrease. The research was conducted in farrowing sows of the Irish landrace breed during the second farrow. Three groups of animals were formed, with ten livestock units in each. Thirty days after successful insemination, the sows of the E10, E5 and E2 experimental groups started receiving lithium ascorbate powder together with feed stuff in dosages of 10, 5 and 2 mg/kg of body weight, respectively. Their weighing and biochemical examinations were performed before the substance introduction as well as on the 60th and 110th days of pregnancy. The following were detected in sows' blood plasma: malondialdehyde, reduced glutathione, oxidized glutathione, SH/SS ratio, superoxide dismutase and glutathione peroxidase activity. Lithium ascorbate usage during sows' breeding cycle caused a significant increase in SH (reduced glutathione) level by 21% (p < 0.05), SS (oxidized glutathione) level decrease by 17% (p < 0.05), and malondialdehyde level decrease by 60% (p < 0.05). These data outline antioxidant defense system activization, reducing the risk of oxidative stress under the influence of feeding with lithium ascorbate. Lithium ascorbate in dosages of 10 mg/kg per body weight given together with feed stuff shows prominent adaptogene and stress protective features in the most effective way. The research conducted regarding lithium ascorbate usage for farrowing sows can reduce the negative consequences of oxidative stress, increase sows' health preservation level, and contribute to fertility boost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...