Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Brain ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38915268

RESUMO

Considering the growing age of the world population, the incidence of epilepsy in older adults is expected to increase significantly. It has been suggested that late-onset temporal lobe epilepsy (LO-TLE) may be neurodegenerative in origin and overlap with Alzheimer's Disease (AD). Herein, we aimed to characterize the pattern of cortical atrophy and cerebrospinal fluid (CSF) biomarkers of AD (total and phosphorylated tau, and ß-amyloid) in a selected population of LO-TLE of unknown origin. We prospectively enrolled individuals with temporal lobe epilepsy onset after the age of 50 and no cognitive impairment. They underwent a structural MRI scan and CSF biomarkers measurement. Imaging and biomarkers data were compared to three retrospectively collected groups: (i) age-sex-matched healthy controls, (ii) patients with Mild Cognitive Impairment (MCI) and abnormal CSF AD biomarkers (MCI-AD), and (iii) patients with MCI and normal CSF AD biomarkers (MCI-noAD). From a pool of 52 patients, twenty consecutive eligible LO-TLE patients with a mean disease duration of 1.8 years were recruited. As control populations, 25 patients with MCI-AD, 25 patients with MCI-noAD, and 25 healthy controls were enrolled. CSF biomarkers returned normal values in LO-TLE, significantly different from patients with MCI due to AD. There were no differences in cortico-subcortical atrophy between epilepsy patients and healthy controls, while patients with MCI demonstrated widespread injuries of cortico-subcortical structures. Individuals with a late-onset form of temporal lobe epilepsy, characterized by short disease duration and normal CSF ß-amyloid and tau protein levels, showed patterns of cortical thickness and subcortical volumes not significantly different from healthy controls, but highly different from patients with MCI, either due to Alzheimer's Disease or not.

2.
Clin Neurophysiol ; 164: 47-56, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38848666

RESUMO

OBJECTIVE: Drowsiness has been implicated in the modulation of centro-temporal spikes (CTS) in Self-limited epilepsy with Centro-Temporal Spikes (SeLECTS). Here, we explore this relationship and whether fluctuations in wakefulness influence the brain networks involved in CTS generation. METHODS: Functional MRI (fMRI) and electroencephalography (EEG) was simultaneously acquired in 25 SeLECTS. A multispectral EEG index quantified drowsiness ('EWI': EEG Wakefulness Index). EEG (Pearson Correlation, Cross Correlation, Trend Estimation, Granger Causality) and fMRI (PPI: psychophysiological interactions) analytic approaches were adopted to explore respectively: (a) the relationship between EWI and changes in CTS frequency and (b) the functional connectivity of the networks involved in CTS generation and wakefulness oscillations. EEG analyses were repeated on a sample of routine EEG from the same patient's cohort. RESULTS: No correlation was found between EWI fluctuations and CTS density during the EEG-fMRI recordings, while they showed an anticorrelated trend when drowsiness was followed by proper sleep in routine EEG traces. According to PPI findings, EWI fluctuations modulate the connectivity between the brain networks engaged by CTS and the left frontal operculum. CONCLUSIONS: While CTS frequency per se seems unrelated to drowsiness, wakefulness oscillations modulate the connectivity between CTS generators and key regions of the language circuitry, a cognitive function often impaired in SeLECTS. SIGNIFICANCE: This work advances our understanding of (a) interaction between CTS occurrence and vigilance fluctuations and (b) possible mechanisms responsible for language disruption in SeLECTS.

3.
Bioengineering (Basel) ; 11(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534498

RESUMO

There are considerable gaps in our understanding of the relationship between human brain activity measured at different temporal and spatial scales. Here, electrocorticography (ECoG) measures were used to predict functional MRI changes in the sensorimotor cortex in two brain states: at rest and during motor performance. The specificity of this relationship to spatial co-localisation of the two signals was also investigated. We acquired simultaneous ECoG-fMRI in the sensorimotor cortex of three patients with epilepsy. During motor activity, high gamma power was the only frequency band where the electrophysiological response was co-localised with fMRI measures across all subjects. The best model of fMRI changes across states was its principal components, a parsimonious description of the entire ECoG spectrogram. This model performed much better than any others that were based either on the classical frequency bands or on summary measures of cross-spectral changes. The region-specific fMRI signal is reflected in spatially and spectrally distributed EEG activity.

4.
Sci Rep ; 13(1): 13442, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596291

RESUMO

A normative electrographic activity map could be a powerful resource to understand normal brain function and identify abnormal activity. Here, we present a normative brain map using scalp EEG in terms of relative band power. In this exploratory study we investigate its temporal stability, its similarity to other imaging modalities, and explore a potential clinical application. We constructed scalp EEG normative maps of brain dynamics from 17 healthy controls using source-localised resting-state scalp recordings. We then correlated these maps with those acquired from MEG and intracranial EEG to investigate their similarity. Lastly, we use the normative maps to lateralise abnormal regions in epilepsy. Spatial patterns of band powers were broadly consistent with previous literature and stable across recordings. Scalp EEG normative maps were most similar to other modalities in the alpha band, and relatively similar across most bands. Towards a clinical application in epilepsy, we found abnormal temporal regions ipsilateral to the epileptogenic hemisphere. Scalp EEG relative band power normative maps are spatially stable across time, in keeping with MEG and intracranial EEG results. Normative mapping is feasible and may be potentially clinically useful in epilepsy. Future studies with larger sample sizes and high-density EEG are now required for validation.


Assuntos
Eletroencefalografia , Couro Cabeludo , Mapeamento Encefálico , Eletrocorticografia , Encéfalo/diagnóstico por imagem
5.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37293113

RESUMO

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of premature mortality among people with epilepsy. Evidence from witnessed and monitored SUDEP cases indicate seizure-induced cardiovascular and respiratory failures; yet, the underlying mechanisms remain obscure. SUDEP occurs often during the night and early morning hours, suggesting that sleep or circadian rhythm-induced changes in physiology contribute to the fatal event. Resting-state fMRI studies have found altered functional connectivity between brain structures involved in cardiorespiratory regulation in later SUDEP cases and in individuals at high-risk of SUDEP. However, those connectivity findings have not been related to changes in cardiovascular or respiratory patterns. Here, we compared fMRI patterns of brain connectivity associated with regular and irregular cardiorespiratory rhythms in SUDEP cases with those of living epilepsy patients of varying SUDEP risk, and healthy controls. We analysed resting-state fMRI data from 98 patients with epilepsy (9 who subsequently succumbed to SUDEP, 43 categorized as low SUDEP risk (no tonic-clonic seizures (TCS) in the year preceding the fMRI scan), and 46 as high SUDEP risk (>3 TCS in the year preceding the scan)) and 25 healthy controls. The global signal amplitude (GSA), defined as the moving standard deviation of the fMRI global signal, was used to identify periods with regular ('low state') and irregular ('high state') cardiorespiratory rhythms. Correlation maps were derived from seeds in twelve regions with a key role in autonomic or respiratory regulation, for the low and high states. Following principal component analysis, component weights were compared between the groups. We found widespread alterations in connectivity of precuneus/posterior cingulate cortex in epilepsy compared to controls, in the low state (regular cardiorespiratory activity). In the low state, and to a lesser degree in the high state, reduced anterior insula connectivity (mainly with anterior and posterior cingulate cortex) in epilepsy appeared, relative to healthy controls. For SUDEP cases, the insula connectivity differences were inversely related to the interval between the fMRI scan and death. The findings suggest that anterior insula connectivity measures may provide a biomarker of SUDEP risk. The neural correlates of autonomic brain structures associated with different cardiorespiratory rhythms may shed light on the mechanisms underlying terminal apnea observed in SUDEP.

6.
ArXiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37064533

RESUMO

A normative electrographic activity map could be a powerful resource to understand normal brain function and identify abnormal activity. Here, we present a normative brain map using scalp EEG in terms of relative band power. In this exploratory study we investigate its temporal stability, its similarity to other imaging modalities, and explore a potential clinical application. We constructed scalp EEG normative maps of brain dynamics from 17 healthy controls using source-localised resting-state scalp recordings. We then correlated these maps with those acquired from MEG and intracranial EEG to investigate their similarity. Lastly, we use the normative maps to lateralise abnormal regions in epilepsy. Spatial patterns of band powers were broadly consistent with previous literature and stable across recordings. Scalp EEG normative maps were most similar to other modalities in the alpha band, and relatively similar across most bands. Towards a clinical application in epilepsy, we found abnormal temporal regions ipsilateral to the epileptogenic hemisphere. Scalp EEG relative band power normative maps are spatially stable across time, in keeping with MEG and intracranial EEG results. Normative mapping is feasible and may be potentially clinically useful in epilepsy. Future studies with larger sample sizes and high-density EEG are now required for validation.

7.
Epilepsy Res ; 192: 107139, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37068421

RESUMO

Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.


Assuntos
Epilepsias Parciais , Epilepsia , Morte Súbita Inesperada na Epilepsia , Humanos , Imagem de Tensor de Difusão/métodos , Apneia , Tonsila do Cerebelo/diagnóstico por imagem , Epilepsias Parciais/complicações , Epilepsias Parciais/diagnóstico por imagem
8.
medRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36993394

RESUMO

Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.

9.
Front Neurosci ; 16: 921922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812224

RESUMO

Background: The unsurpassed sensitivity of intracranial electroencephalography (icEEG) and the growing interest in understanding human brain networks and ongoing activities in health and disease have make the simultaneous icEEG and functional magnetic resonance imaging acquisition (icEEG-fMRI) an attractive investigation tool. However, safety remains a crucial consideration, particularly due to the impact of the specific characteristics of icEEG and MRI technologies that were safe when used separately but may risk health when combined. Using a clinical 3-T scanner with body transmit and head-receive coils, we assessed the safety and feasibility of our icEEG-fMRI protocol. Methods: Using platinum and platinum-iridium grid and depth electrodes implanted in a custom-made acrylic-gel phantom, we assessed safety by focusing on three factors. First, we measured radio frequency (RF)-induced heating of the electrodes during fast spin echo (FSE, as a control) and the three sequences in our icEEG-fMRI protocol. Heating was evaluated with electrodes placed orthogonal or parallel to the static magnetic field. Using the configuration with the greatest heating observed, we then measured the total heating induced in our protocol, which is a continuous 70-min icEEG-fMRI session comprising localizer, echo-planar imaging (EPI), and magnetization-prepared rapid gradient-echo sequences. Second, we measured the gradient switching-induced voltage using configurations mimicking electrode implantation in the frontal and temporal lobes. Third, we assessed the gradient switching-induced electrode movement by direct visual detection and image analyses. Results: On average, RF-induced local heating on the icEEG electrode contacts tested were greater in the orthogonal than parallel configuration, with a maximum increase of 0.2°C during EPI and 1.9°C during FSE. The total local heating was below the 1°C safety limit across all contacts tested during the 70-min icEEG-fMRI session. The induced voltage was within the 100-mV safety limit regardless of the configuration. No gradient switching-induced electrode displacement was observed. Conclusion: We provide evidence that the additional health risks associated with heating, neuronal stimulation, or device movement are low when acquiring fMRI at 3 T in the presence of clinical icEEG electrodes under the conditions reported in this study. High specific absorption ratio sequences such as FSE should be avoided to prevent potential inadvertent tissue heating.

10.
Front Neurol ; 13: 896204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873766

RESUMO

Objectives: Sudden unexpected death in epilepsy (SUDEP) is a catastrophic epilepsy outcome for which there are no reliable premortem imaging biomarkers of risk. Percival respiratory depression is seen in monitored SUDEP and near SUDEP cases, and abnormal chemosensing of raised blood carbon dioxide (CO2) is thought to contribute. Damage to brainstem respiratory control and chemosensing structures has been demonstrated in structural imaging and neuropathological studies of SUDEP. We hypothesized that functional MRI (fMRI) correlates of abnormal chemosensing are detectable in brainstems of persons with epilepsy (PWE) and are different from healthy controls (HC). Methods: We analyzed fMRI BOLD activation and brain connectivity in 10 PWE and 10 age- and sex-matched HCs during precisely metered iso-oxic, hypercapnic breathing challenges. Segmented brainstem responses were of particular interest, along with characterization of functional connectivity metrics between these structures. Regional BOLD activations during hypercapnic challenges were convolved with hemodynamic responses, and the resulting activation maps were passed on to group-level analyses. For the functional connectivity analysis, significant clusters from BOLD results were used as seeds. Each individual seed time-series activation map was extracted for bivariate correlation coefficient analyses to study changes in brain connectivity between PWE and HCs. Results: (1) Greater brainstem BOLD activations in PWE were observed compared to HC during hypercapnic challenges in several structures with respiratory/chemosensing properties. Group comparison between PWE vs. HC showed significantly greater activation in the dorsal raphe among PWE (p < 0.05) compared to HCs. (2) PWE had significantly greater seed-seed connectivity and recruited more structures during hypercapnia compared to HC. Significance: The results of this study show that BOLD responses to hypercapnia in human brainstem are detectable and different in PWE compared to HC. Increased dorsal raphe BOLD activation in PWE and increased seed-seed connectivity between brainstem and adjacent subcortical areas may indicate abnormal chemosensing in these individuals. Imaging investigation of brainstem respiratory centers involved in respiratory regulation in PWE is an important step toward identifying suspected dysfunction of brainstem breathing control that culminates in SUDEP and deserve further study as potential imaging SUDEP biomarkers.

11.
Neuroimage ; 254: 119129, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35331868

RESUMO

OBJECTIVES: Simultaneous intracranial EEG and functional MRI (icEEG-fMRI) recordings in humans, whereby EEG is recorded from electrodes implanted inside the cranium during fMRI scanning, were made possible following safety studies on test phantoms and our specification of a rigorous data acquisition protocol. In parallel with this work, other investigations in our laboratory revealed the damage caused by the EEG electrode implantation procedure at the cellular level. The purpose of this report is to further explore the safety of performing MRI, including simultaneous icEEG-fMRI data acquisitions, in the presence of implanted intra-cranial EEG electrodes, by presenting some histopathological and heat-shock immunopositive labeling observations in surgical tissue samples from patients who underwent the scanning procedure. METHODS: We performed histopathology and heat shock protein expression analyses on surgical tissue samples from nine patients who had been implanted with icEEG electrodes. Three patients underwent icEEG-fMRI and structural MRI (sMRI); three underwent sMRI only, all at similar time points after icEEG implantation; and three who did not undergo functional or sMRI with icEEG electrodes. RESULTS: The histopathological findings from the three patients who underwent icEEG-fMRI were similar to those who did not, in that they showed no evidence of additional damage in the vicinity of the electrodes, compared to cases who had no MRI with implanted icEEG electrodes. This finding was similar to our observations in patients who only underwent sMRI with implanted icEEG electrodes. CONCLUSION: This work provides unique evidence on the safety of functional MRI in the presence of implanted EEG electrodes. In the cases studied, icEEG-fMRI performed in accordance with our protocol based on low-SAR (≤0.1 W/kg) sequences at 1.5T using a head-transmit RF coil, did not result in measurable additional damage to the brain tissue in the vicinity of implanted electrodes. Furthermore, while one cannot generalize the results of this study beyond the specific electrode implantation and scanning conditions described herein, we submit that our approach is a useful framework for the post-hoc safety assessment of MR scanning with brain implants.


Assuntos
Eletrocorticografia , Eletroencefalografia , Eletrodos Implantados/efeitos adversos , Eletroencefalografia/métodos , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio
12.
Front Neurol ; 12: 693504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621233

RESUMO

Background: Potentially curative epilepsy surgery can be offered if a single, discrete epileptogenic zone (EZ) can be identified. For individuals in whom there is no clear concordance between clinical localization, scalp EEG, and imaging data, intracranial EEG (icEEG) may be needed to confirm a predefined hypothesis regarding irritative zone (IZ), seizure onset zone (SOZ), and EZ prior to surgery. However, icEEG has limited spatial sampling and may fail to reveal the full extent of epileptogenic network if predefined hypothesis is not correct. Simultaneous icEEG-fMRI has been safely acquired in humans and allows exploration of neuronal activity at the whole-brain level related to interictal epileptiform discharges (IED) captured intracranially. Methods: We report icEEG-fMRI in eight patients with refractory focal epilepsy who had resective surgery and good postsurgical outcome. Surgical resection volume in seizure-free patients post-surgically reflects confirmed identification of the EZ. IEDs on icEEG were classified according to their topographic distribution and localization (Focal, Regional, Widespread, and Non-contiguous). We also divided IEDs by their location within the surgical resection volume [primary IZ (IZ1) IED] or outside [secondary IZ (IZ2) IED]. The distribution of fMRI blood oxygen level-dependent (BOLD) changes associated with individual IED classes were assessed over the whole brain using a general linear model. The concordance of resulting BOLD map was evaluated by comparing localization of BOLD clusters with surgical resection volume. Additionally, we compared the concordance of BOLD maps and presence of BOLD clusters in remote brain areas: precuneus, cuneus, cingulate, medial frontal, and thalamus for different IED classes. Results: A total of 38 different topographic IED classes were identified across the 8 patients: Focal (22) and non-focal (16, Regional = 9, Widespread = 2, Non-contiguous = 5). Twenty-nine IEDs originated from IZ1 and 9 from IZ2. All IED classes were associated with BOLD changes. BOLD maps were concordant with the surgical resection volume for 27/38 (71%) IED classes, showing statistical global maximum BOLD cluster or another cluster in the surgical resection volume. The concordance of BOLD maps with surgical resection volume was greater (p < 0.05) for non-focal (87.5%, 14/16) as compared to Focal (59%, 13/22) IED classes. Additionally, BOLD clusters in remote cortical and deep brain areas were present in 84% (32/38) of BOLD maps, more commonly (15/16; 93%) for non-focal IED-related BOLD maps. Conclusions: Simultaneous icEEG-fMRI can reveal BOLD changes at the whole-brain level for a wide range of IEDs on icEEG. BOLD clusters within surgical resection volume and remote brain areas were more commonly seen for non-focal IED classes, suggesting that a wider hemodynamic network is at play.

13.
Front Neurol ; 12: 671890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177777

RESUMO

Background: Disruptions in central autonomic processes in people with epilepsy have been studied through evaluation of heart rate variability (HRV). Decreased HRV appears in epilepsy compared to healthy controls, suggesting a shift in autonomic balance toward sympathetic dominance; recent studies have associated HRV changes with seizure severity and outcome of interventions. However, the processes underlying these autonomic changes remain unclear. We examined the nature of these changes by assessing alterations in whole-brain functional connectivity, and relating those alterations to HRV. Methods: We examined regional brain activity and functional organization in 28 drug-resistant epilepsy patients and 16 healthy controls using resting-state functional magnetic resonance imaging (fMRI). We employed an HRV state-dependent functional connectivity (FC) framework with low and high HRV states derived from the following four cardiac-related variables: 1. RR interval, 2. root mean square of successive differences (RMSSD), 4. low-frequency HRV (0.04-0.15 Hz; LF-HRV) and high-frequency HRV (0.15-0.40 Hz; HF-HRV). The effect of group (epilepsy vs. controls), HRV state (low vs. high) and the interactions of group and state were assessed using a mixed analysis of variance (ANOVA). We assessed FC within and between 7 large-scale functional networks consisting of cortical regions and 4 subcortical networks, the amygdala, hippocampus, basal ganglia and thalamus networks. Results: Consistent with previous studies, decreased RR interval (increased heart rate) and decreased HF-HRV appeared in people with epilepsy compared to healthy controls. For both groups, fluctuations in heart rate were positively correlated with BOLD activity in bilateral thalamus and regions of the cerebellum, and negatively correlated with BOLD activity in the insula, putamen, superior temporal gyrus and inferior frontal gyrus. Connectivity strength in patients between right thalamus and ventral attention network (mainly insula) increased in the high LF-HRV state compared to low LF-HRV; the opposite trend appeared in healthy controls. A similar pattern emerged for connectivity between the thalamus and basal ganglia. Conclusion: The findings suggest that resting connectivity patterns between the thalamus and other structures underlying HRV expression are modified in people with drug-resistant epilepsy compared to healthy controls.

14.
Neurosci Lett ; 757: 135960, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34048818

RESUMO

In this work we examine the possible neural basis for two brainstem-spinal reflexes using source analyses of brain activity recorded over the cortex and posterior fossa. In a sample of 5 healthy adult subjects, using axial and vestibular stimulation by means of applied impulsive forces, evoked potentials were recorded with 63 channels using a 10 % cerebellar extension montage. In parallel, EMG was recorded from soleus and tibialis anterior muscles and accelerometry from the lower leg. Recordings over the cerebellum (ECeG) confirmed the presence of short latency (SL) potentials and these were associated with changes in high-frequency power. The SL responses to the two stimulus modalities differed in that the axial stimulation produced an initial pause and then a burst in the high-frequency ECeG, followed by excitation/inhibition in soleus while vestibular stimulation produced an initial burst then a pause, followed by inhibition/excitation in soleus. These short latency responses were followed by longer latency N1/P2/N2 responses in the averaged EEG, which were maximal at FCz. Brain Electrical Source Analysis (BESA) demonstrated both cerebellar and cerebral cortical contributions to the short-latency responses and primarily frontal cortex contributions to the long-latency EPs. The latency and polarity of the SL EPs, in conjunction with changes in high-frequency spontaneous activity, are consistent with cerebellar involvement in the control of brainstem-spinal reflexes. The early involvement of frontal cortex and subsequent later activity may be an indicator of the activation of the cortical motor-related system for rapid responses which may follow the reflexive components. These findings provide evidence of the feasibility of non-invasive electrophysiology of the human cerebellum and have demonstrated cerebellar and frontal activations associated with postural-related stimuli.


Assuntos
Tronco Encefálico/fisiologia , Cerebelo/fisiologia , Córtex Motor/fisiologia , Reflexo de Endireitamento/fisiologia , Coluna Vertebral/fisiologia , Adulto , Estimulação Elétrica , Eletroencefalografia , Eletromiografia , Potenciais Evocados/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Músculo Esquelético , Tempo de Reação , Vestíbulo do Labirinto
15.
Epilepsia ; 61(8): 1570-1580, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32683693

RESUMO

OBJECTIVES: Hypoxia, or abnormally low blood-oxygen levels, often accompanies seizures and may elicit brain structural changes in people with epilepsy which contribute to central processes underlying sudden unexpected death in epilepsy (SUDEP). The extent to which hypoxia may be related to brain structural alterations in this patient group remains unexplored. METHODS: We analyzed high-resolution T1-weighted magnetic resonance imaging (MRI) to determine brain morphometric and volumetric alterations in people with generalized tonic-clonic seizures (GTCS) recorded during long-term video-electroencephalography (VEEG), recruited from two sites (n = 22), together with data from age- and sex-matched healthy controls (n = 43). Subjects were sub-divided into those with mild/moderate (GTCS-hypox-mild/moderate, n = 12) and severe (GTCS-hypox-severe, n = 10) hypoxia, measured by peripheral oxygen saturation (SpO2 ) during VEEG. Whole-brain voxel-based morphometry (VBM) and regional volumetry were used to assess group comparisons and correlations between brain structural measurements as well as the duration and extent of hypoxia during GTCS. RESULTS: Morphometric and volumetric alterations appeared in association with peri-GTCS hypoxia, including volume loss in the periaqueductal gray (PAG), thalamus, hypothalamus, vermis, cerebellum, parabrachial pons, and medulla. Thalamic and PAG volume was significantly reduced in GTCS patients with severe hypoxia compared with GTCS patients with mild/moderate hypoxia. Brainstem volume loss appeared in both hypoxia groups, although it was more extensive in those with severe hypoxia. Significant negative partial correlations emerged between thalamic and hippocampal volume and extent of hypoxia, whereas vermis and accumbens volumes declined with increasing hypoxia duration. SIGNIFICANCE: Brain structural alterations in patients with GTCS are related to the extent of hypoxia in brain sites that serve vital functions. Although the changes are associative only, they provide evidence of injury to regulatory brain sites related to respiratory manifestations of seizures.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsia Tônico-Clônica/metabolismo , Hipóxia/metabolismo , Morte Súbita Inesperada na Epilepsia , Adulto , Encéfalo/patologia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Eletroencefalografia , Epilepsia Tônico-Clônica/diagnóstico por imagem , Epilepsia Tônico-Clônica/fisiopatologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Estudos Prospectivos , Sono , Fatores de Tempo , Gravação em Vídeo , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
16.
Front Neurosci ; 14: 429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477052

RESUMO

The application of intracranial electroencephalography (icEEG) recording during functional magnetic resonance imaging (icEEG-fMRI) has allowed the study of the hemodynamic correlates of epileptic activity and of the neurophysiological basis of the blood oxygen level-dependent (BOLD) signal. However, the applicability of this technique is affected by data quality issues such as signal drop out in the vicinity of the implanted electrodes. In our center we have limited the technique to a quadrature head transmit and receive RF coil following the results of a safety evaluation. The purpose of this study is to gather further safety-related evidence for performing icEEG-fMRI using a body RF-transmit coil, to allow the greater flexibility afforded by the use of modern, high-density receive arrays, and therefore parallel imaging with benefits such as reduced signal drop-out and distortion artifact. Specifically, we performed a set of empirical temperature measurements on a 1.5T Siemens Avanto MRI scanner with the body RF-transmit coil in a range of electrode and connector cable configurations. The observed RF-induced heating during a high-SAR sequence was maximum in the immediate vicinity of a depth electrode located along the scanner's central axis (range: 0.2-2.4°C) and below 0.5°C at the other electrodes. Also for the high-SAR sequence, we observed excessive RF-related heating in connection cable configurations that deviate from our recommended setup. For the low-SAR sequence, the maximum observed temperature increase across all configurations was 0.3°C. This provides good evidence to allow simultaneous icEEG-fMRI to be performed utilizing the body transmit coil on the 1.5T Siemens Avanto MRI scanner at our center with acceptable additional risk by following a well-defined protocol.

17.
Front Neurol ; 10: 185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891003

RESUMO

The elusive nature of sudden unexpected death in epilepsy (SUDEP) has led to investigations of mechanisms and identification of biomarkers of this fatal scenario that constitutes the leading cause of premature death in epilepsy. In this short review, we compile evidence from structural and functional neuroimaging that demonstrates alterations to brain structures and networks involved in central autonomic and respiratory control in SUDEP and those at elevated risk. These findings suggest that compromised central control of vital regulatory processes may contribute to SUDEP. Both structural changes and dysfunctional interactions indicate potential mechanisms underlying the fatal event; contributions to individual risk prediction will require further study. The nature and sites of functional disruptions suggest potential non-invasive interventions to overcome failing processes.

18.
Neuroimage ; 184: 981-992, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315907

RESUMO

OBJECTIVES: Simultaneous intracranial EEG and functional MRI (icEEG-fMRI) can be used to map the haemodynamic (BOLD) changes associated with the generation of IEDs. Unlike scalp EEG-fMRI, in most patients who undergo icEEG-fMRI, IEDs recorded intracranially are numerous and show variability in terms of field amplitude and morphology. Therefore, visual marking can be highly subjective and time consuming. In this study, we applied an automated spike classification algorithm, Wave_clus (WC), to IEDs marked visually on icEEG data acquired during simultaneous fMRI acquisition. The motivation of this work is to determine whether using a potentially more consistent and unbiased automated approach can produce more biologically meaningful BOLD patterns compared to the BOLD patterns obtained based on the conventional, visual classification. METHODS: We analysed simultaneous icEEG-fMRI data from eight patients with severe drug resistant epilepsy, and who subsequently underwent resective surgery that resulted in a good outcome: confirmed epileptogenic zone (EZ). For each patient two fMRI analyses were performed: one based on the conventional visual IED classification and the other based on the automated classification. We used the concordance of the IED-related BOLD maps with the confirmed EZ as an indication of their biological meaning, which we compared for the automated and visual classifications for all IED originating in the EZ. RESULTS: Across the group, the visual and automated classifications resulted in 32 and 24 EZ IED classes respectively, for which 75% vs 83% of the corresponding BOLD maps were concordant. At the single-subject level, the BOLD maps for the automated approach had greater concordance in four patients, and less concordance in one patient, compared to those obtained using the conventional visual classification, and equal concordance for three remaining patients. These differences did not reach statistical significance. CONCLUSION: We found automated IED classification on icEEG data recorded during fMRI to be feasible and to result in IED-related BOLD maps that may contain similar or greater biological meaning compared to the conventional approach in the majority of the cases studied. We anticipate that this approach will help to gain significant new insights into the brain networks associated with IEDs and in relation to postsurgical outcome.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adulto , Análise por Conglomerados , Feminino , Humanos , Masculino , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes
19.
Sleep ; 42(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566659

RESUMO

The cyclic alternating pattern (CAP) encompasses the pseudoperiodic appearance of synchronized brain waves and rhythms and is considered a regulator of the nonrapid eye movement (NREM) sleep vigilance level, reflecting sleep instability. To determine the brain regions responsible for this phenomenon, we scored and analyzed sleep functional magnetic resonance imaging data acquired with simultaneous electroencephalography (EEG-fMRI). Group analysis revealed a set of brain areas showing statistically significant blood oxygen-level dependent signal correlated positively with the synchronization phase of the CAP, most prominent being the insula, the middle cingulate gyrus, and the basal forebrain. These areas may form a network acting as a synchronization pacemaker, controlling the level of NREM sleep vigilance and the sleeper's arousability.


Assuntos
Prosencéfalo Basal/fisiologia , Ondas Encefálicas/fisiologia , Fases do Sono/fisiologia , Sono/fisiologia , Adulto , Eletroencefalografia/métodos , Feminino , Hemodinâmica/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Polissonografia/métodos , Vigília/fisiologia
20.
Seizure ; 61: 30-37, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30059825

RESUMO

PURPOSE: We set out to establish the clinical utility of EEG-correlated fMRI as part of the presurgical evaluation, by measuring prospectively its effects on the clinical decision. METHODS: Patients with refractory extra-temporal focal epilepsy, referred for presurgical evaluation were recruited in a period of 18 months. The EEG-fMRI based localization was presented during a multi-disciplinary meeting after the team had defined the presumed RESULTS: Sixteen patients (six women), with a median age of 28 years, were recruited. Interpretable EEG-fMRI results were available in 13: interictal epileptic discharges (IEDs) were recorded in eleven patients and seizures were recorded in two patients. In three patients, no epileptic activity was captured during EEG-fMRI acquisition and in two of those an IED topographic map correlation was performed (between EEG recorded inside the scanner and long-term video EEG monitoring). EEG-fMRI results presentation had no impact on the initial clinical decision in three patients (23%) of the thirteen and resulted in a modification of the initial surgical plan in ten patients (77%) of the thirteen finally presented in MDT; in eight patients the impact was on the planned placement of invasive electrodes and in two patients the EEG-fMRI led to additional non-invasive tests before proceeding further with surgery. CONCLUSION: The study is a prospective observational cohort study specifically designed to assess the impact of EEG-fMRI on the clinical decision making process, suggesting a significant influence of EEG-fMRI on epilepsy surgery planning.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Tomada de Decisão Clínica/métodos , Eletroencefalografia , Epilepsia , Imageamento por Ressonância Magnética , Adulto , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Epilepsia/psicologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Cuidados Pré-Operatórios , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...