Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 295(29): 9786-9801, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32434926

RESUMO

Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria. Each of the steps in FuFA biosynthesis occurs on pre-existing phospholipid fatty acid chains, and we identified pathway intermediates and the gene products that catalyze 9M5-FuFA and 9D5-FuFA synthesis in Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas palustris CGA009. One previously unknown pathway intermediate was a methylated diunsaturated fatty acid, (10E,12E)-11-methyloctadeca-10,12-dienoic acid (11Me-10t,12t-18:2), produced from (11E)-methyloctadeca-11-enoic acid (11Me-12t-18:1) by a newly identified fatty acid desaturase, UfaD. We also show that molecular oxygen (O2) is the source of the oxygen atom in the furan ring of 9M5-FuFA, and our findings predict that an O2-derived oxygen atom is incorporated into 9M5-FuFA via a protein, UfaO, that uses the 11Me-10t,12t-18:2 fatty acid phospholipid chain as a substrate. We discovered that R. palustris also contains a SAM-dependent methylase, FufM, that produces 9D5-FuFA from 9M5-FuFA. These results uncover the biochemical sequence of intermediates in a bacterial pathway for 9M5-FuFA and 9D5-FuFA biosynthesis and suggest the existence of homologs of the enzymes identified here that could function in FuFA biosynthesis in other organisms.


Assuntos
Vias Biossintéticas , Ácidos Graxos/biossíntese , Furanos/metabolismo , Rhodobacter sphaeroides/metabolismo , Rodopseudomonas/metabolismo , Ácidos Graxos/genética , Rhodobacter sphaeroides/genética , Rodopseudomonas/genética
3.
Anal Chem ; 86(20): 10036-43, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25208235

RESUMO

Identification of unknown compounds is of critical importance in GC/MS applications (metabolomics, environmental toxin identification, sports doping, petroleomics, and biofuel analysis, among many others) and remains a technological challenge. Derivation of elemental composition is the first step to determining the identity of an unknown compound by MS, for which high accuracy mass and isotopomer distribution measurements are critical. Here, we report on the development of a dedicated, applications-grade GC/MS employing an Orbitrap mass analyzer, the GC/Quadrupole-Orbitrap. Built from the basis of the benchtop Orbitrap LC/MS, the GC/Quadrupole-Orbitrap maintains the performance characteristics of the Orbitrap, enables quadrupole-based isolation for sensitive analyte detection, and includes numerous analysis modalities to facilitate structural elucidation. We detail the design and construction of the instrument, discuss its key figures-of-merit, and demonstrate its performance for the characterization of unknown compounds and environmental toxins.


Assuntos
Espectrometria de Massas/instrumentação , Desenho de Equipamento
4.
Proc Natl Acad Sci U S A ; 111(33): E3450-7, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25092314

RESUMO

Fatty acids play important functional and protective roles in living systems. This paper reports on the synthesis of a previously unidentified 19 carbon furan-containing fatty acid, 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid) (19Fu-FA), in phospholipids from Rhodobacter sphaeroides. We show that 19Fu-FA accumulation is increased in cells containing mutations that increase the transcriptional response of this bacterium to singlet oxygen ((1)O2), a reactive oxygen species generated by energy transfer from one or more light-excited donors to molecular oxygen. We identify a previously undescribed class of S-adenosylmethionine-dependent methylases that convert a phospholipid 18 carbon cis unsaturated fatty acyl chain to a 19 carbon methylated trans unsaturated fatty acyl chain (19M-UFA). We also identify genes required for the O2-dependent conversion of this 19M-UFA to 19Fu-FA. Finally, we show that the presence of (1)O2 leads to turnover of 19Fu-Fa in vivo. We propose that furan-containing fatty acids like 19Fu-FA can act as a membrane-bound scavenger of (1)O2, which is naturally produced by integral membrane enzymes of the R. sphaeroides photosynthetic apparatus.


Assuntos
Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Furanos/metabolismo , Cromatografia Gasosa , Espécies Reativas de Oxigênio/metabolismo , Rhodobacter sphaeroides/metabolismo , Oxigênio Singlete/metabolismo
5.
mBio ; 4(1): e00541-12, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23300250

RESUMO

UNLABELLED: Singlet oxygen ((1)O(2)) is a reactive oxygen species generated by energy transfer from one or more excited donors to molecular oxygen. Many biomolecules are prone to oxidation by (1)O(2), and cells have evolved systems to protect themselves from damage caused by this compound. One way that the photosynthetic bacterium Rhodobacter sphaeroides protects itself from (1)O(2) is by inducing a transcriptional response controlled by ChrR, an anti-σ factor which releases an alternative sigma factor, σ(E), in the presence of (1)O(2). Here we report that induction of σ(E)-dependent gene transcription is decreased in the presence of (1)O(2) when two conserved genes in the σ(E) regulon are deleted, including one encoding a cyclopropane fatty acid synthase homologue (RSP2144) or one encoding a protein of unknown function (RSP1091). Thus, we conclude that RSP2144 and RSP1091 are each necessary to increase σ(E) activity in the presence of (1)O(2). In addition, we found that unlike in wild-type cells, where ChrR is rapidly degraded when (1)O(2) is generated, turnover of this anti-σ factor is slowed when cells lacking RSP2144, RSP1091, or both of these proteins are exposed to (1)O(2). Further, we demonstrate that the organic hydroperoxide tert-butyl hydroperoxide promotes ChrR turnover in both wild-type cells and mutants lacking RSP2144 or RSP1091, suggesting differences in the ways different types of oxidants increase σ(E) activity. IMPORTANCE: Oxygen serves many crucial functions on Earth; it is produced during photosynthesis and needed for other pathways. While oxygen is relatively inert, it can be converted to reactive oxygen species (ROS) that destroy biomolecules, cause disease, or kill cells. When energy is transferred to oxygen, the ROS singlet oxygen is generated. To understand how singlet oxygen impacts cells, we study the stress response to this ROS in Rhodobacter sphaeroides, a bacterium that, like plants, generates this compound as a consequence of photosynthesis. This paper identifies proteins that activate a stress response to singlet oxygen and shows that they act in a specific response to this ROS. The identified proteins are found in many free-living, symbiotic, or pathogenic bacteria that can encounter singlet oxygen in nature. Thus, our findings provide new information about a stress response to a ROS of broad biological, agricultural, and biomedical importance.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Rhodobacter sphaeroides/efeitos dos fármacos , Rhodobacter sphaeroides/genética , Oxigênio Singlete/metabolismo , Transcrição Gênica , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Deleção de Genes , Fator sigma/biossíntese , Oxigênio Singlete/toxicidade , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...