Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 352: 119945, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215596

RESUMO

Sequestering carbon into agricultural soils is considered as a means of mitigating climate change. We used agronomic soil test results representing c. 95% of the farmed land area in Finland to estimate the potential of the uppermost 15 cm soil layer of mineral agricultural soils to sequester organic carbon (OC) and to contribute to the mitigation of climate change. The estimation of the maximum capacity of mineral matter to protect OC in stable mineral-associated form was based on the theory that clay and fine-sized (fines = clay + silt) particles have a limited capacity to protect OC. In addition, we used the clay/OC and fines/OC ratios to identify areas with a risk of erosion and reduced productivity, thus indicating priority areas potentially benefitting from the increased soil OC contents. We found that 32-40% of the mineral agricultural soils in Finland have the potential to further accumulate mineral-associated OC (MOC), while in the majority of soils, the current OC stock in the uppermost 15 cm exceeded the capacity of mineral matter to protect OC. The nationwide soil OC sequestration potential of the uppermost 15 cm in mineral agricultural soils ranged between 0.21 and 0.26 Tg, which corresponds to less than 2% of annual greenhouse gas emissions in Finland. The fields with the highest potential for SOC accrual were found in the southern and southwestern parts of the country, including some of the most intensively cultivated high-clay soils. Although the nationwide potential for additional OC sequestration was estimated to be relatively small, the current OC storage in Finnish arable mineral soils (0-15 cm) is large, 128 Tg. Farming practices enabling maximum OC input into the soil play an important role as a tool for mitigating the loss of carbon from high-OC soils in the changing climate. Furthermore, especially in high-clay areas with potential for MOC accrual, efforts to increase soil OC could help improve soil structural stability and therefore reduce erosion and the loss of nutrients to the aquatic environments.


Assuntos
Carbono , Solo , Solo/química , Finlândia , Argila , Carbono/análise , Agricultura , Minerais , Sequestro de Carbono
2.
Sci Total Environ ; 905: 167300, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742969

RESUMO

While organic carbon (OC) in agricultural mineral soils is widely studied in terms of soil carbon sequestration and gaseous emissions, discharge-induced OC loss from soil is still poorly understood and estimations of boreal soil OC loads within water erosion are lacking. Loss of organic matter from arable soils is a concern for surface water quality, climate change and soil productivity. The main aim of this study was to quantify the role of water erosion in total OC and nitrogen (N) loads exported in agricultural discharge from boreal mineral soils under various cultivation practices. Surface water and subsurface drainage were collected near-continually over 2 years in two clayey and one sandy soil in Finland. Eroded sediment was mechanically separated by centrifugation from all discharge samples to detect sediment OC% and N% by dry-combustion method. Dissolved OC and N concentrations in selected discharge samples were measured with high-temperature catalytic oxidation of unfiltered supernatant. A multiple linear regression model was used to study the significant factors affecting dissolved, sediment and total OC loads. In the clayey soils, the sediment OC (2-24 kg ha-1 y-1) and N (0.2-1.1 kg ha-1 y-1) export accounted for up to 35 % and 20 % of the annual discharge-induced total loads of OC (19-85 kg ha-1) and N (2-8 kg ha-1), respectively. In the sandy soil, erosion was negligible and dissolved loads of 17-35 kg OC ha-1 y-1and 4-7 kg N ha-1 y-1 were detected. Subsurface drainage exported most of the sediment-associated OC and N loads from clayey soils. For the total OC loads, the distribution varied between the discharge routes, while the total N loads were mostly exported in subsurface drainage in both soil types. Sediment OC and N exports were related to soil plowing and discharge intensity, while dissolved OC loss was promoted by high surface soil OC%. Our results also indicated that a single cultivation practice may affect sediment and dissolved loads in opposite ways. These findings can be used to complement carbon budget estimations for mineral agricultural soils, and to assess soil management effects on terrestrial organic matter loading to boreal surface waters.

3.
J Environ Qual ; 47(6): 1478-1486, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30512069

RESUMO

No-till as a water protection measure is highly efficient in controlling erosion and particulate P (PP) loss but tends to increase dissolved reactive P (DRP) concentrations in runoff water. In a 9-yr field study on a clay soil in Southwest Finland, the effects of no-till and autumn plowing on surface runoff and subsurface drainage water quality were compared. The site had a 2% slope and was under spring cereal cropping, with approximately replacement fertilizer P rates. Vertical stratification of soil-test P that had developed during a preceding 6-yr grass ley was undone by plowing but continued to develop under no-till. During the 9-yr study period, no-till soil had 27% lower cumulative total P losses than plowed soil (10.0 vs. 13.7 kg total P ha). Concentrations and losses of PP were clearly lower under no-till than under plowing (5.6 vs. 12.3 kg PP ha), but DRP loss showed the opposite trend (4.3 vs. 1.4 kg DRP ha). There was an increasing trend in subsurface drainflow DRP concentration under no-till, possibly because of development of a conductive pore structure from soil surface to drain depth. The potential benefit of no-till in water protection depends on how much of the PP transported to water is transformed into a bioavailable form and used by aquatic organisms. The beneficial effect of no-till in controlling P-induced eutrophication at the study site would only be realized if the bioavailable share of PP exceeds 43%. Otherwise, no-till would not be an efficient eutrophication control measure at this site.


Assuntos
Agricultura/métodos , Monitoramento Ambiental , Fósforo/análise , Poluentes do Solo/análise , Argila , Eutrofização , Fertilizantes , Solo
4.
Sci Total Environ ; 618: 1519-1528, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29128120

RESUMO

Dissolved organic carbon (DOC) load in discharges from cultivated soils may have negative impacts on surface waters. The magnitude of the load may vary according to soil properties or agricultural management practices. This study quantifies the DOC load of cultivated mineral soils and investigates whether the load is affected by agricultural practices. Discharge volumes and concentrations of DOC and dissolved organic nitrogen (DON) were continually measured at three sites from surface runoff and artificial subsurface drainage or from combined total discharge over a two-year period (2012-2014). Two experimental sites in South-West Finland had clayey soils (with soil carbon contents of 2.7-5.9% in the topmost soil layer), and the third site in West-Central Finland had sandy soil (soil carbon contents of 4.3-6.2%). Permanent grassland, organic manure application, mineral fertilization, and conventional ploughing or no-till activities were studied. Furthermore, the biodegradable DOC pool of surface runoff and subsurface drainage water from no-till and ploughed fields was estimated in a 2-month incubation experiment with natural bacterial communities collected from the Baltic Sea seawater. The annual DOC and DON loads were affected by discharge volume and seasonal weather conditions. The loads varied between 25-52kgha-1 and 0.8-3.2kgha-1, respectively, and were comparable to those from boreal forests with similar soil types. The DOC load increased with increasing topsoil carbon content at all sites. There were slightly higher DOC concentrations and DOC load from permanent grassland, but otherwise we could not distinguish any clear management-induced differences in the total DOC loads. While only 6-17% of the DOC in discharge water was biologically degraded during the 2-month incubation, the proportion of biodegradable (labile) DOC in surface runoff appeared to increase when soil was ploughed compared to no-till.

5.
J Environ Qual ; 45(3): 977-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27136165

RESUMO

Soil test P (STP) concentration indicates whether annual P applications can be expected to give yield increases and can also indicate an elevated risk of P mobilization and potential for P transfer to surface waters and groundwater from a particular field. Changes in STP with time thus project agronomic benefits and environmental risks of different P use strategies. To predict STP changes with time, we constructed a simple dynamic model for which the input variables are P balance and initial STP. The model parameters (soil type-specific constants) were fitted using data originating from 44 P fertilizer experiments with different P rates. Model performance was evaluated using independent data sets that either had reasonably accurate input values ( = 103) or were obtained from farmers through interviews ( = 638). The simulations were in agreement with measured STP changes for both evaluation data sets when fittings were performed separately for four main soil types (clays, silts, coarse mineral soils, and organic soils). Statistical analysis confirmed that the model captured the trends in STP (NHOAc test) with acceptable accuracy and precision, with of 0.83 and 0.66 for the data with more accurate input and for farmer interview data, respectively; the corresponding model efficiency statistics were 0.88 and 0.66. The model is not restricted to use with one soil test, as fittings for several different types of soil tests can be generated. In this study, we fitted the model for Olsen P data retrieved from the literature. Agronomic use of the model includes evaluation of P use strategies, e.g., when a certain STP level is targeted or when long-term economy of P use is calculated. In an environmental context, the model can be used to predict STP changes with time under variable P balance regimes, which is essential for realistic assessment of changes in the potential for dissolved P losses.


Assuntos
Fósforo/química , Poluentes do Solo/química , Fertilizantes , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...