Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 43(12): 2295-2303, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743720

RESUMO

The use of fed-batch extractive fermentation can overcome inhibitory effects caused by the substrate and ethanol to the yeast cells, since it allows regulate the substrate concentration and remove the product as it is produced. The present study describes the modelling and experimental validation of ethanol production in fed-batch extractive fermentation with in situ ethanol removal by oleic acid in a non-conventional drop column bioreactor (DCB) operated under industrial conditions. The model developed using the hybrid Andrews-Levenspiel equation and ethanol distribution coefficient parameter (KDE) provided an excellent description of the fed-batch extractive ethanol fermentation process with oleic acid. Furthermore, extractive fed-batch fermentation allowed the feed up to 306.6 kg m-3 of substrate (total reducing sugars), with total ethanol concentration in extractive fermentation in the ranging 100.3-139.8 kg m-3 (12.7-17.7 ºGL), 19.9-67.2% higher when compared with the conventional process without ethanol removal. Moreover, this process has the advantage of less effluent generated and energy consumption for ethanol recovery when compared to the conventional process.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Etanol/química , Fermentação , Microbiologia Industrial/métodos , Cinética , Modelos Teóricos , Ácido Oleico/química , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Açúcares/química
2.
Biodegradation ; 23(3): 441-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22119895

RESUMO

In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l(-1), and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l(-1) of sodium acetate, >0.8 g l(-1) of ammonium chloride and 60 to 100 mg l(-1) of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l(-1) of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Carbono/metabolismo , Cromo/metabolismo , Recuperação e Remediação Ambiental/métodos , Filtros Microporos/microbiologia , Esgotos/microbiologia , Bactérias/química , Biodegradação Ambiental , Recuperação e Remediação Ambiental/instrumentação , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...