Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 60(6): 3372-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001813

RESUMO

Inhibition of ABC transporters is a common mechanism underlying drug-drug interactions (DDIs). We determined the inhibitory potential of antifungal drugs currently used for invasive fungal infections on ABC transporters P-glycoprotein (P-gp), MRP1 to MRP5, BCRP, and BSEP in vitro Membrane vesicles isolated from transporter-overexpressing HEK 293 cells were used to investigate the inhibitory potential of antifungal drugs (250 µM) on transport of model substrates. Concentration-inhibition curves were determined if transport inhibition was >60%. Fifty percent inhibitory concentrations (IC50s) for P-gp and BCRP were both 2 µM for itraconazole, 5 and 12 µM for hydroxyitraconazole, 3 and 6 µM for posaconazole, and 3 and 11 µM for isavuconazole, respectively. BSEP was strongly inhibited by itraconazole and hydroxyitraconazole (3 and 17 µM, respectively). Fluconazole and voriconazole did not inhibit any transport for >60%. Micafungin uniquely inhibited all transporters, with strong inhibition of MRP4 (4 µM). Anidulafungin and caspofungin showed strong inhibition of BCRP (7 and 6 µM, respectively). Amphotericin B only weakly inhibited BCRP-mediated transport (127 µM). Despite their wide range of DDIs, azole antifungals exhibit selective inhibition on efflux transporters. Although echinocandins display low potential for clinically relevant DDIs, they demonstrate potent in vitro inhibitory activity. This suggests that inhibition of ABC transporters plays a crucial role in the inexplicable (non-cytochrome P450-mediated) DDIs with antifungal drugs.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Anfotericina B/farmacologia , Transporte Biológico/efeitos dos fármacos , Equinocandinas/farmacologia , Fluconazol/farmacologia , Células HEK293 , Humanos , Itraconazol/análogos & derivados , Itraconazol/farmacologia , Lipopeptídeos/farmacologia , Micafungina , Triazóis/farmacologia , Voriconazol/farmacologia
2.
Curr Opin Pharmacol ; 24: 38-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26218924

RESUMO

The management of drug-drug interactions (DDIs) between azole antifungals (fluconazole, itraconazole, posaconazole and voriconazole) and immunosuppressants (cyclosporine, tacrolimus, everolimus and sirolimus) in transplant patients remains challenging, as the impact of altered immunosuppressant concentrations puts the patient at high risk for either toxicity or transplant rejection. As a result, it is a complex task for the clinician to maintain immunosuppressant concentrations within the desired therapeutic range and this requires a highly individualized patient approach. We provide important tools for adequate assessment of the drug interactions that cause this pharmacokinetic variability of immunosuppressants. A stepwise approach for the evaluation and subsequent management options, including a decision flow chart, are provided for optimal handling of these clinically relevant DDIs.


Assuntos
Antifúngicos/uso terapêutico , Azóis/uso terapêutico , Imunossupressores/uso terapêutico , Transplante de Órgãos , Interações Medicamentosas , Humanos
3.
Expert Rev Anti Infect Ther ; 13(6): 799-815, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25947367

RESUMO

Echinocandins belong to the class of antifungal agents. Currently, three echinocandin drugs are licensed for intravenous treatment of invasive fungal infections: anidulafungin, caspofungin and micafungin. While their antifungal activity overlaps, there are substantial differences in pharmacokinetics (PK). Numerous factors may account for variability in PK of echinocandins including age (pediatrics vs adults), body surface area and body composition (normal weight vs obesity), disease status (e.g., critically ill and burn patients) and organ dysfunction (kidney and liver impairment). Subsequent effects of altered exposure might impact efficacy and safety. Knowledge of PK behavior is crucial in optimal clinical utilization of echinocandin in a specific patient or patient population. This review provides up-to-date information on PK data of anidulafungin, caspofungin and micafungin in special patient populations. Patient populations addressed are neonates, children and adolescents, obese patients, patients with hepatic or renal impairment, critically ill patients (including burn patients) and patients with hematological diseases.


Assuntos
Antifúngicos/uso terapêutico , Equinocandinas/farmacocinética , Lipopeptídeos/farmacocinética , Adolescente , Adulto , Anidulafungina , Candida/efeitos dos fármacos , Caspofungina , Criança , Estado Terminal , Interações Medicamentosas , Equinocandinas/efeitos adversos , Doenças Hematológicas/fisiopatologia , Humanos , Recém-Nascido , Rim/fisiopatologia , Lipopeptídeos/efeitos adversos , Fígado/fisiopatologia , Micafungina , Testes de Sensibilidade Microbiana , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...