Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Radiol Cardiothorac Imaging ; 6(2): e230172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573128

RESUMO

Purpose To perform a qualitative and quantitative evaluation of the novel image-navigated (iNAV) 3D late gadolinium enhancement (LGE) cardiac MRI imaging strategy in comparison with the conventional diaphragm-navigated (dNAV) 3D LGE cardiac MRI strategy for the assessment of left atrial fibrosis in atrial fibrillation (AF). Materials and Methods In this prospective study conducted between April and September 2022, 26 consecutive participants with AF (mean age, 61 ± 11 years; 19 male) underwent both iNAV and dNAV 3D LGE cardiac MRI, with equivalent spatial resolution and timing in the cardiac cycle. Participants were randomized in the acquisition order of iNAV and dNAV. Both, iNAV-LGE and dNAV-LGE images were analyzed qualitatively using a 5-point Likert scale and quantitatively (percentage of atrial fibrosis using image intensity ratio threshold 1.2), including testing for overlap in atrial fibrosis areas by calculating Dice score. Results Acquisition time of iNAV was significantly lower compared with dNAV (4.9 ± 1.1 minutes versus 12 ± 4 minutes, P < .001, respectively). There was no evidence of a difference in image quality for all prespecified criteria between iNAV and dNAV, although dNAV was the preferred image strategy in two-thirds of cases (17/26, 65%). Quantitative assessment demonstrated that mean fibrosis scores were lower for iNAV compared with dNAV (12 ± 8% versus 20 ± 12%, P < .001). Spatial correspondence between the atrial fibrosis maps was modest (Dice similarity coefficient, 0.43 ± 0.15). Conclusion iNAV-LGE acquisition in individuals with AF was more than twice as fast as dNAV acquisition but resulted in a lower atrial fibrosis score. The differences between these two strategies might impact clinical interpretation. ©RSNA, 2024.


Assuntos
Fibrilação Atrial , Diafragma , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Fibrilação Atrial/diagnóstico , Meios de Contraste , Gadolínio , Átrios do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos , Feminino
2.
Front Cardiovasc Med ; 11: 1359715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596691

RESUMO

Background: A reduced left atrial (LA) strain correlates with the presence of atrial fibrillation (AF). Conventional atrial strain analysis uses two-dimensional (2D) imaging, which is, however, limited by atrial foreshortening and an underestimation of through-plane motion. Retrospective gated computed tomography (RGCT) produces high-fidelity three-dimensional (3D) images of the cardiac anatomy throughout the cardiac cycle that can be used for estimating 3D mechanics. Its feasibility for LA strain measurement, however, is understudied. Aim: The aim of this study is to develop and apply a novel workflow to estimate 3D LA motion and calculate the strain from RGCT imaging. The utility of global and regional strains to separate heart failure in patients with reduced ejection fraction (HFrEF) with and without AF is investigated. Methods: A cohort of 30 HFrEF patients with (n = 9) and without (n = 21) AF underwent RGCT prior to cardiac resynchronisation therapy. The temporal sparse free form deformation image registration method was optimised for LA feature tracking in RGCT images and used to estimate 3D LA endocardial motion. The area and fibre reservoir strains were calculated over the LA body. Universal atrial coordinates and a human atrial fibre atlas enabled the regional strain calculation and the fibre strain calculation along the local myofibre orientation, respectively. Results: It was found that global reservoir strains were significantly reduced in the HFrEF + AF group patients compared with the HFrEF-only group patients (area strain: 11.2 ± 4.8% vs. 25.3 ± 12.6%, P = 0.001; fibre strain: 4.5 ± 2.0% vs. 15.2 ± 8.8%, P = 0.001), with HFrEF + AF patients having a greater regional reservoir strain dyssynchrony. All regional reservoir strains were reduced in the HFrEF + AF patient group, in whom the inferior wall strains exhibited the most significant differences. The global reservoir fibre strain and LA volume + posterior wall reservoir fibre strain exceeded LA volume alone and 2D global longitudinal strain (GLS) for AF classification (area-under-the-curve: global reservoir fibre strain: 0.94 ± 0.02, LA volume + posterior wall reservoir fibre strain: 0.95 ± 0.02, LA volume: 0.89 ± 0.03, 2D GLS: 0.90 ± 0.03). Conclusion: RGCT enables 3D LA motion estimation and strain calculation that outperforms 2D strain metrics and LA enlargement for AF classification. Differences in regional LA strain could reflect regional myocardial properties such as atrial fibrosis burden.

3.
J Am Heart Assoc ; 13(3): e031489, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38240222

RESUMO

BACKGROUND: Embolic stroke of unknown source (ESUS) accounts for 1 in 6 ischemic strokes. Current guidelines do not recommend routine cardiac magnetic resonance (CMR) imaging in ESUS, and beyond the identification of cardioembolic sources, there are no data assessing new clinical findings from CMR in ESUS. This study aimed to assess the prevalence of new cardiac and noncardiac findings and to determine their impact on clinical care in patients with ESUS. METHODS AND RESULTS: In this prospective, multicenter, observational study, CMR imaging was performed within 3 months of ESUS. All scans were reported according to standard clinical practice. A new clinical finding was defined as one not previously identified through prior clinical evaluation. A clinically significant finding was defined as one resulting in further investigation, follow-up, or treatment. A change in patient care was defined as initiation of medical, interventional, surgical, or palliative care. From 102 patients recruited, 96 underwent CMR imaging. One or more new clinical findings were observed in 59 patients (61%). New findings were clinically significant in 48 (81%) of these patients. Of 40 patients with a new clinically significant cardiac finding, 21 (53%) experienced a change in care (medical therapy, n=15; interventional/surgical procedure, n=6). In 12 patients with a new clinically significant extracardiac finding, 6 (50%) experienced a change in care (medical therapy, n=4; palliative care, n=2). CONCLUSIONS: CMR imaging identifies new clinically significant cardiac and noncardiac findings in half of patients with recent ESUS. Advanced cardiovascular screening should be considered in patients with ESUS. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04555538.


Assuntos
AVC Embólico , Embolia Intracraniana , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/epidemiologia , Prevalência , Estudos Prospectivos , Imageamento por Ressonância Magnética , Embolia Intracraniana/diagnóstico por imagem , Embolia Intracraniana/epidemiologia , Fatores de Risco
4.
Interface Focus ; 13(6): 20230038, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106921

RESUMO

To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling in silico clinical trials at scale (https://github.com/pcmlab/atrialmtk).

5.
Comput Biol Med ; 162: 107009, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301099

RESUMO

This work presents an open-source software pipeline to create patient-specific left atrial models with fibre orientations and a fibrDEFAULTosis map, suitable for electrophysiology simulations, and quantifies the intra and inter observer reproducibility of the model creation. The semi-automatic pipeline takes as input a contrast enhanced magnetic resonance angiogram, and a late gadolinium enhanced (LGE) contrast magnetic resonance (CMR). Five operators were allocated 20 cases each from a set of 50 CMR datasets to create a total of 100 models to evaluate inter and intra-operator variability. Each output model consisted of: (1) a labelled surface mesh open at the pulmonary veins and mitral valve, (2) fibre orientations mapped from a diffusion tensor MRI (DTMRI) human atlas, (3) fibrosis map extracted from the LGE-CMR scan, and (4) simulation of local activation time (LAT) and phase singularity (PS) mapping. Reproducibility in our pipeline was evaluated by comparing agreement in shape of the output meshes, fibrosis distribution in the left atrial body, and fibre orientations. Reproducibility in simulations outputs was evaluated in the LAT maps by comparing the total activation times, and the mean conduction velocity (CV). PS maps were compared with the structural similarity index measure (SSIM). The users processed in total 60 cases for inter and 40 cases for intra-operator variability. Our workflow allows a single model to be created in 16.72 ± 12.25 min. Similarity was measured with shape, percentage of fibres oriented in the same direction, and intra-class correlation coefficient (ICC) for the fibrosis calculation. Shape differed noticeably only with users' selection of the mitral valve and the length of the pulmonary veins from the ostia to the distal end; fibrosis agreement was high, with ICC of 0.909 (inter) and 0.999 (intra); fibre orientation agreement was high with 60.63% (inter) and 71.77% (intra). The LAT showed good agreement, where the median ± IQR of the absolute difference of the total activation times was 2.02 ± 2.45 ms for inter, and 1.37 ± 2.45 ms for intra. Also, the average ± sd of the mean CV difference was -0.00404 ± 0.0155 m/s for inter, and 0.0021 ± 0.0115 m/s for intra. Finally, the PS maps showed a moderately good agreement in SSIM for inter and intra, where the mean ± sd SSIM for inter and intra were 0.648 ± 0.21 and 0.608 ± 0.15, respectively. Although we found notable differences in the models, as a consequence of user input, our tests show that the uncertainty caused by both inter and intra-operator variability is comparable with uncertainty due to estimated fibres, and image resolution accuracy of segmentation tools.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico por imagem , Reprodutibilidade dos Testes , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Imageamento por Ressonância Magnética/métodos , Fibrose , Valor Preditivo dos Testes
6.
Urol Case Rep ; 48: 102388, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37009234

RESUMO

We report a unique case of botryoid-type embryonal RMS of the proximal and mid ureter in a pregnant 29-year-old woman. The ureteral polyp consisted of a malignant small blue round cell tumor with a myxoid background and contained evidence of foci of immature cartilage and aggregates of epithelial cells reminiscent of hair follicle. Immunohistochemical stains for myogenin and desmin confirmed skeletal muscle, or rhabdomyoblastic, differentiation. The compact epithelial cell fragments reminiscent of hair follicle differentiation were positive for p40. Treatment included 6 cycles of adjuvant chemotherapy (vincristine, actinomycin and cyclophosphamide (VAC). No recurrent or metastatic disease was identified post-surgery.

7.
Technol Cancer Res Treat ; 22: 15330338231169875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37078150

RESUMO

Introduction: Gastric cancer is the fourth deadliest cancer worldwide. Due to the lack of specific early symptoms and noninvasive methods for early detection, the prognosis of gastric cancer patients is poor. Gastric cancer has a well-recognized infectious etiology, with Helicobacter pylori and Epstein-Barr Virus being the main associated infectious agents. Although other Epstein-Barr Virus-associated malignancies often manifest with abnormal levels of anti-Epstein-Barr Virus antibodies, it is not clear whether this is also true for gastric cancer. Potentially, these antibodies could serve as a noninvasive tool for gastric cancer screening or as markers for gastric cancer risk and provide a better understanding of the participation of Epstein-Barr Virus in the development of this neoplasm. Methods: We conducted a systematic review of articles analyzing anti-Epstein-Barr Virus serology in gastric cancer and precursor lesions following PRISMA guidelines. Patients were classified according to the Correa cascade of gastric lesions and whether they were positive or negative by EBER-in situ hybridization (Epstein-Barr Virus-associated gastric cancer and Epstein-Barr Virus-nonassociated gastric cancer, respectively). Results: We retrieved 16 articles involving 9735 subjects from 12 different countries and 4 databases, PubMed, SciELO, Scopus, and Google Scholar. Higher antibody titers were observed not only in Epstein-Barr Virus-associated gastric cancer than in Epstein-Barr Virus-nonassociated gastric cancer but also in Epstein-Barr Virus-nonassociated gastric cancer and gastric cancer-precursor lesions when compared with patients with mild dyspepsia or healthy controls. In all cases, the associations were predominantly with antibodies directed against lytic cycle antigens. Conclusion: Data support the role of Epstein-Barr Virus lytic reactivation in the development of advanced gastric lesions. However, more studies are needed to confirm these associations, particularly the association with lesions considered negative by EBER-in situ hybridization, and to establish a set of antibodies and thresholds indicative of enhanced risk to develop these lesions.


Assuntos
Herpesvirus Humano 4 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Risco
8.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992360

RESUMO

Helicobacter pylori and EBV are considered the main risk factors in developing gastric cancer. Both pathogens establish life-lasting infections and both are considered carcinogenic in humans. Different lines of evidence support that both pathogens cooperate to damage the gastric mucosa. Helicobacter pylori CagA positive virulent strains induce the gastric epithelial cells to secrete IL-8, which is a potent chemoattractant for neutrophils and one of the most important chemokines for the bacterium-induced chronic gastric inflammation. EBV is a lymphotropic virus that persists in memory B cells. The mechanism by which EBV reaches, infects and persists in the gastric epithelium is not presently understood. In this study, we assessed whether Helicobacter pylori infection would facilitate the chemoattraction of EBV-infected B lymphocytes. We identified IL-8 as a powerful chemoattractant for EBV-infected B lymphocytes, and CXCR2 as the main IL-8 receptor whose expression is induced by the EBV in infected B lymphocytes. The inhibition of expression and/or function of IL-8 and CXCR2 reduced the ERK1/2 and p38 MAPK signaling and the chemoattraction of EBV-infected B lymphocytes. We propose that IL-8 at least partially explains the arrival of EBV-infected B lymphocytes to the gastric mucosa, and that this illustrates a mechanism of interaction between Helicobacter pylori and EBV.


Assuntos
Linfócitos B , Fatores Quimiotáticos , Infecções por Vírus Epstein-Barr , Infecções por Helicobacter , Interleucina-8 , Humanos , Antígenos de Bactérias , Linfócitos B/metabolismo , Linfócitos B/virologia , Proteínas de Bactérias/metabolismo , Fatores Quimiotáticos/metabolismo , Células Epiteliais , Mucosa Gástrica/metabolismo , Herpesvirus Humano 4/metabolismo , Interleucina-8/metabolismo , Neoplasias Gástricas
10.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675141

RESUMO

EBV and Helicobacter pylori (H. pylori) cause highly prevalent persistent infections as early as in childhood. Both pathogens are associated with gastric carcinogenesis. H. pylori interferes with iron metabolism, enhancing the synthesis of acute-phase proteins hepcidin, C-reactive protein (CRP), and α-1 glycoprotein (AGP), but we do not know whether EBV does the same. In this study, we correlated the EBV antibody levels and the serum levels of hepcidin, CRP, and AGP in 145 children from boarding schools in Mexico City. We found that children IgG positive to EBV antigens (VCA, EBNA1, and EA) presented hepcidin, AGP, and CRP levels higher than uninfected children. Hepcidin and AGP remained high in children solely infected with EBV, while CRP was only significantly high in coinfected children. We observed positive correlations between hepcidin and EBV IgG antibodies (p < 0.5). Using the TCGA gastric cancer database, we also observed an association between EBV and hepcidin upregulation. The TCGA database also allowed us to analyze the two important pathways controlling hepcidin expression, BMP−SMAD and IL-1ß/IL-6. We observed only the IL-1ß/IL-6-dependent inflammatory pathway being significantly associated with EBV infection. We showed here for the first time an association between EBV and enhanced levels of hepcidin. Further studies should consider EBV when evaluating iron metabolism and anemia, and whether in the long run this is an important mechanism of undernourishment and EBV gastric carcinogenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Helicobacter pylori , Neoplasias Gástricas , Criança , Humanos , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/metabolismo , Helicobacter pylori/metabolismo , Hepcidinas/metabolismo , Herpesvirus Humano 4 , Imunoglobulina G/metabolismo , Interleucina-6/metabolismo , Ferro/metabolismo , Neoplasias Gástricas/etiologia
11.
Comput Biol Med ; 153: 106528, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634600

RESUMO

BACKGROUND: Personalised computer models are increasingly used to diagnose cardiac arrhythmias and tailor treatment. Patient-specific models of the left atrium are often derived from pre-procedural imaging of anatomy and fibrosis. These images contain noise that can affect simulation predictions. There are few computationally tractable methods for propagating uncertainties from images to clinical predictions. METHOD: We describe the left atrium anatomy using our Bayesian shape model that captures anatomical uncertainty in medical images and has been validated on 63 independent clinical images. This algorithm describes the left atrium anatomy using Nmodes=15 principal components, capturing 95% of the shape variance and calculated from 70 clinical cardiac magnetic resonance (CMR) images. Latent variables encode shape uncertainty: we evaluate their posterior distribution for each new anatomy. We assume a normally distributed prior. We use the unscented transform to sample from the posterior shape distribution. For each sample, we assign the local material properties of the tissue using the projection of late gadolinium enhancement CMR (LGE-CMR) onto the anatomy to estimate local fibrosis. To test which activation patterns an atrium can sustain, we perform an arrhythmia simulation for each sample. We consider 34 possible outcomes (31 macro-re-entries, functional re-entry, atrial fibrillation, and non-sustained arrhythmia). For each sample, we determine the outcome by comparing pre- and post-ablation activation patterns following a cross-field stimulus. RESULTS: We create patient-specific atrial electrophysiology models of ten patients. We validate the mean and standard deviation maps from the unscented transform with the same statistics obtained with 12,000 Monte Carlo (ground truth) samples. We found discrepancies <3% and <2% for the mean and standard deviation for fibrosis burden and activation time, respectively. For each patient case, we then compare the predicted outcome from a model built on the clinical data (deterministic approach) with the probability distribution obtained from the simulated samples. We found that the deterministic approach did not predict the most likely outcome in 80% of the cases. Finally, we estimate the influence of each source of uncertainty independently. Fixing the anatomy to the posterior mean and maintaining uncertainty in fibrosis reduced the prediction of self-terminating arrhythmias from ≃14% to ≃7%. Keeping the fibrosis fixed to the sample mean while retaining uncertainty in shape decreased the prediction of substrate-driven arrhythmias from ≃33% to ≃18% and increased the prediction of macro-re-entries from ≃54% to ≃68%. CONCLUSIONS: We presented a novel method for propagating shape uncertainty in atrial models through to uncertainty in numerical simulations. The algorithm takes advantage of the unscented transform to compute the output distribution of the outcomes. We validated the unscented transform as a viable sampling strategy to deal with anatomy uncertainty. We then showed that the prediction computed with a deterministic model does not always coincide with the most likely outcome. Finally, we found that shape uncertainty affects the predictions of macro-re-entries, while fibrosis uncertainty affects the predictions of functional re-entries.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Meios de Contraste , Incerteza , Teorema de Bayes , Gadolínio , Átrios do Coração , Imageamento por Ressonância Magnética/métodos , Fibrose
12.
Circ Arrhythm Electrophysiol ; 15(2): e010253, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35089057

RESUMO

BACKGROUND: Current ablation therapy for atrial fibrillation is suboptimal, and long-term response is challenging to predict. Clinical trials identify bedside properties that provide only modest prediction of long-term response in populations, while patient-specific models in small cohorts primarily explain acute response to ablation. We aimed to predict long-term atrial fibrillation recurrence after ablation in large cohorts, by using machine learning to complement biophysical simulations by encoding more interindividual variability. METHODS: Patient-specific models were constructed for 100 atrial fibrillation patients (43 paroxysmal, 41 persistent, and 16 long-standing persistent), undergoing first ablation. Patients were followed for 1 year using ambulatory ECG monitoring. Each patient-specific biophysical model combined differing fibrosis patterns, fiber orientation maps, electrical properties, and ablation patterns to capture uncertainty in atrial properties and to test the ability of the tissue to sustain fibrillation. These simulation stress tests of different model variants were postprocessed to calculate atrial fibrillation simulation metrics. Machine learning classifiers were trained to predict atrial fibrillation recurrence using features from the patient history, imaging, and atrial fibrillation simulation metrics. RESULTS: We performed 1100 atrial fibrillation ablation simulations across 100 patient-specific models. Models based on simulation stress tests alone showed a maximum accuracy of 0.63 for predicting long-term fibrillation recurrence. Classifiers trained to history, imaging, and simulation stress tests (average 10-fold cross-validation area under the curve, 0.85±0.09; recall, 0.80±0.13; precision, 0.74±0.13) outperformed those trained to history and imaging (area under the curve, 0.66±0.17) or history alone (area under the curve, 0.61±0.14). CONCLUSION: A novel computational pipeline accurately predicted long-term atrial fibrillation recurrence in individual patients by combining outcome data with patient-specific acute simulation response. This technique could help to personalize selection for atrial fibrillation ablation.


Assuntos
Fibrilação Atrial/cirurgia , Função do Átrio Esquerdo , Remodelamento Atrial , Ablação por Cateter/efeitos adversos , Frequência Cardíaca , Aprendizado de Máquina , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Potenciais de Ação , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Eletrocardiografia Ambulatorial , Fibrose , Humanos , Imageamento por Ressonância Magnética , Recidiva , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
13.
Eur Heart J Cardiovasc Imaging ; 23(1): 31-41, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34747450

RESUMO

Atrial arrhythmias, including atrial fibrillation and atrial flutter, may be treated through catheter ablation. The process of atrial arrhythmia catheter ablation, which includes patient selection, pre-procedural planning, intra-procedural guidance, and post-procedural assessment, is typically characterized by the use of several imaging modalities to sequentially inform key clinical decisions. Increasingly, advanced imaging modalities are processed via specialized image analysis techniques and combined with intra-procedural electrical measurements to inform treatment approaches. Here, we review the use of multimodality imaging for left atrial ablation procedures. The article first outlines how imaging modalities are routinely used in the peri-ablation period. We then describe how advanced imaging techniques may inform patient selection for ablation and ablation targets themselves. Ongoing research directions for improving catheter ablation outcomes by using imaging combined with advanced analyses for personalization of ablation targets are discussed, together with approaches for their integration in the standard clinical environment. Finally, we describe future research areas with the potential to improve catheter ablation outcomes.


Assuntos
Fibrilação Atrial , Flutter Atrial , Ablação por Cateter , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Flutter Atrial/diagnóstico por imagem , Flutter Atrial/cirurgia , Ablação por Cateter/métodos , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Humanos , Imagem Multimodal , Resultado do Tratamento
14.
Comput Biol Med ; 138: 104872, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598070

RESUMO

BACKGROUND: Cardiac Resynchronization Therapy (CRT) in dyssynchronous heart failure patients is ineffective in 20-30% of cases. Sub-optimal left ventricular (LV) pacing location can lead to non-response, thus there is interest in LV lead location optimization. Invasive acute haemodynamic response (AHR) measurements have been used to optimize the LV pacing location during CRT implantation. In this manuscript, we aim to predict the optimal lead location (AHR>10%) with non-invasive computed tomography (CT) based measures of cardiac anatomical and mechanical properties, and simulated electrical activation times. METHODS: Non-invasive measurements from CT images and ECG were acquired from 34 patients indicated for CRT upgrade. The LV lead was implanted and AHR was measured at different pacing sites. Computer models of the ventricles were used to simulate the electrical activation of the heart, track the mechanical motion throughout the cardiac cycle and measure the wall thickness of the LV on a patient specific basis. RESULTS: We tested the ability of electrical, mechanical and anatomical indices to predict the optimal LV location. Electrical (RV-LV delay) and mechanical (time to peak contraction) indices were correlated with an improved AHR, while wall thickness was not predictive. A logistic regression model combining RV-LV delay and time to peak contraction was able to predict positive response with 70 ± 11% accuracy and AUROC curve of 0.73. CONCLUSION: Non-invasive electrical and mechanical indices can predict optimal epicardial lead location. Prospective analysis of these indices could allow clinicians to test the AHR at fewer pacing sites and reduce time, costs and risks to patients.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Ventrículos do Coração/diagnóstico por imagem , Humanos , Resultado do Tratamento , Função Ventricular Esquerda
15.
Antibiotics (Basel) ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316875

RESUMO

Mites are arthropods and some of them infest dry meat cured products and produce allergic reactions. Some mites, such as Tyrolichus casei, Tyrophagus putrescentiae, or Tyrophagus longior feed on filamentous fungi that grow during the meat curing process. Removal of mite infestation of meat products is extremely difficult and there are no adequate miticidal compounds. The filamentous fungus Eurotium rubrum growing on the surface of ham is able to exert a biocontrol of the population of mites due to the production of miticidal compound(s). We have purified two compounds by silica gel chromatography, gel filtration, semipreparative and analytical HPLC and determined their miticidal activity against T. casei using a mite feeding assay. Mass spectrometry and NMR analysis showed that these two compounds are prenylated salicilyl aldehydes with a C-7 alkyl chain differing in a double bond in the C-7 alkyl chain. Structures correspond to those of flavoglaucin and aspergin. Pure flavoglaucin has a miticidal activity resulting in more than 90% mite mortality whereas aspergin does not affect the mites. Both compounds were formed simultaneously by E. rubrum C47 cultures in different media suggesting that they are synthesized by the same pathway. Production of both compounds was higher in solid culture media and the products were associated with abundant formation of cleistothecia. In liquid cultures both compounds remained mainly cell-associated and only about 10% of the total compounds was released to the culture broth. This miticidal compound may be used to combat efficiently mite infestation in different habitats. These results, will promote further advances on the utilization of flavoglaucin in food preservation and in human health since this compound has antitumor activity.

16.
J Cell Sci ; 133(22)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33093241

RESUMO

Accurate measurements of cell morphology and behaviour are fundamentally important for understanding how disease, molecules and drugs affect cell function in vivo Here, by using muscle stem cell (muSC) responses to injury in zebrafish as our biological paradigm, we established a 'ground truth' for muSC behaviour. This revealed that segmentation and tracking algorithms from commonly used programs are error-prone, leading us to develop a fast semi-automated image analysis pipeline that allows user-defined parameters for segmentation and correction of cell tracking. Cell Tracking Profiler (CTP) is a package that runs two existing programs, HK Means and Phagosight within the Icy image analysis suite, to enable user-managed cell tracking from 3D time-lapse datasets to provide measures of cell shape and movement. We demonstrate how CTP can be used to reveal changes to cell behaviour of muSCs in response to manipulation of the cell cytoskeleton by small-molecule inhibitors. CTP and the associated tools we have developed for analysis of outputs thus provide a powerful framework for analysing complex cell behaviour in vivo from 4D datasets that are not amenable to straightforward analysis.


Assuntos
Rastreamento de Células , Peixe-Zebra , Algoritmos , Animais , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Movimento
17.
Front Physiol ; 11: 1145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041850

RESUMO

Catheter ablation therapy for persistent atrial fibrillation (AF) typically includes pulmonary vein isolation (PVI) and may include additional ablation lesions that target patient-specific anatomical, electrical, or structural features. Clinical centers employ different ablation strategies, which use imaging data together with electroanatomic mapping data, depending on data availability. The aim of this study was to compare ablation techniques across a virtual cohort of AF patients. We constructed 20 paroxysmal and 30 persistent AF patient-specific left atrial (LA) bilayer models incorporating fibrotic remodeling from late-gadolinium enhancement (LGE) MRI scans. AF was simulated and post-processed using phase mapping to determine electrical driver locations over 15 s. Six different ablation approaches were tested: (i) PVI alone, modeled as wide-area encirclement of the pulmonary veins; PVI together with: (ii) roof and inferior lines to model posterior wall box isolation; (iii) isolating the largest fibrotic area (identified by LGE-MRI); (iv) isolating all fibrotic areas; (v) isolating the largest driver hotspot region [identified as high simulated phase singularity (PS) density]; and (vi) isolating all driver hotspot regions. Ablation efficacy was assessed to predict optimal ablation therapies for individual patients. We subsequently trained a random forest classifier to predict ablation response using (a) imaging metrics alone, (b) imaging and electrical metrics, or (c) imaging, electrical, and ablation lesion metrics. The optimal ablation approach resulting in termination, or if not possible atrial tachycardia (AT), varied among the virtual patient cohort: (i) 20% PVI alone, (ii) 6% box ablation, (iii) 2% largest fibrosis area, (iv) 4% all fibrosis areas, (v) 2% largest driver hotspot, and (vi) 46% all driver hotspots. Around 20% of cases remained in AF for all ablation strategies. The addition of patient-specific and ablation pattern specific lesion metrics to the trained random forest classifier improved predictive capability from an accuracy of 0.73 to 0.83. The trained classifier results demonstrate that the surface areas of pre-ablation driver regions and of fibrotic tissue not isolated by the proposed ablation strategy are both important for predicting ablation outcome. Overall, our study demonstrates the need to select the optimal ablation strategy for each patient. It suggests that both patient-specific fibrosis properties and driver locations are important for planning ablation approaches, and the distribution of lesions is important for predicting an acute response.

18.
R Soc Open Sci ; 7(8): 200585, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32968521

RESUMO

The potential for acute shortages of ventilators at the peak of the COVID-19 pandemic has raised the possibility of needing to support two patients from a single ventilator. To provide a system for understanding and prototyping designs, we have developed a mathematical model of two patients supported by a mechanical ventilator. We propose a standard set-up where we simulate the introduction of T-splitters to supply air to two patients and a modified set-up where we introduce a variable resistance in each inhalation pathway and one-way valves in each exhalation pathway. Using the standard set-up, we demonstrate that ventilating two patients with mismatched lung compliances from a single ventilator will lead to clinically significant reductions in tidal volume in the patient with the lowest respiratory compliance. Using the modified set-up, we demonstrate that it could be possible to achieve the same tidal volumes in two patients with mismatched lung compliances, and we show that the tidal volume of one patient can be manipulated independently of the other. The results indicate that, with appropriate modifications, two patients could be supported from a single ventilator with independent control of tidal volumes.

19.
SoftwareX ; 12: 100570, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34124331

RESUMO

Personalised medicine is based on the principle that each body is unique and will respond to therapies differently. In cardiology, characterising patient specific cardiovascular properties would help in personalising care. One promising approach for characterising these properties relies on performing computational analysis of multimodal imaging data. An interactive cardiac imaging environment, which can seamlessly render, manipulate, derive calculations, and otherwise prototype research activities, is therefore sought-after. We developed the Cardiac Electro-Mechanics Research Group Application (CemrgApp) as a platform with custom image processing and computer vision toolkits for applying statistical, machine learning and simulation approaches to study physiology, pathology, diagnosis and treatment of the cardiovascular system. CemrgApp provides an integrated environment, where cardiac data visualisation and workflow prototyping are presented through a common graphical user interface.

20.
J Imaging ; 6(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34460738

RESUMO

In this paper, a novel method for interaction detection is presented to compare the contact dynamics of macrophages in the Drosophila embryo. The study is carried out by a framework called macrosight, which analyses the movement and interaction of migrating macrophages. The framework incorporates a segmentation and tracking algorithm into analysing the motion characteristics of cells after contact. In this particular study, the interactions between cells is characterised in the case of control embryos and Shot mutants, a candidate protein that is hypothesised to regulate contact dynamics between migrating cells. Statistical significance between control and mutant cells was found when comparing the direction of motion after contact in specific conditions. Such discoveries provide insights for future developments in combining biological experiments with computational analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...