Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 42(10): 1028-1036, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27624065

RESUMO

To meet their carbohydrate requirements, adult parasitoids exploit a broad range of sugar resources, including floral and extrafloral nectar and honeydew. Although honeydew might be the predominant sugar source, especially in agricultural systems, it often is nutritionally inferior to sugar sources like nectar. Given its broad availability, it may be expected that sugar-feeding insects have evolved specialized adaptations to deal with this typically inferior sugar source. This would apply especially to organisms that have a close association with honeydew producers. Here, we hypothesized that parasitoids of honeydew-producing insects should show a pronounced response to sugars, such as fructose, sucrose, melezitose, and trehalose, and to a lesser extent glucose. To test this hypothesis, we investigated sugar consumption, feeding behavior and survival of the aphid parasitoid Aphidius ervi on several sugars (equiweight solutions). Our results show that A. ervi adults consumed typical honeydew sugars (sucrose, fructose, trehalose, and melezitose) the most, while consuming considerably less glucose or melibiose. Rhamnose, which does not occur in aphid honeydew, was not, or was only marginally, consumed. When different sugars were provided at the same time, A. ervi adults preferred sucrose or fructose over glucose or melezitose. Furthermore, pre-exposure to sucrose or fructose significantly reduced subsequent intake of glucose, suggesting an acquired distaste for glucose after being previously exposed to highly preferred sugars such as sucrose and fructose. Altogether, this study shows that A. ervi adults prefer sugars (fructose, melezitose, trehalose, and sucrose) that are overrepresented in aphid honeydew and show a lower preference to one (glucose) that is underrepresented in honeydew.


Assuntos
Afídeos/parasitologia , Metabolismo dos Carboidratos , Vespas/fisiologia , Animais , Afídeos/fisiologia , Carboidratos/análise , Metabolismo Energético , Comportamento Alimentar , Feminino , Longevidade , Masculino
2.
FEMS Yeast Res ; 16(1): fov115, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26703195

RESUMO

The widespread use of azole antifungals in medicine and agriculture and the resulting long-persistent residues could potentially affect beneficial fungi. However, there is very little information on the tolerance of non-target environmental fungi to azoles. In this study, we assessed the susceptibility of diverse plant- and insect-associated yeasts from the Metschnikowia clade, including several ecologically important species, to widely used medical and agricultural azoles (epoxiconazole, imazalil, ketoconazole and voriconazole). A total of 120 strains from six species were tested. Minimum inhibitory concentrations (MICs) were determined by the EUCAST broth microdilution procedure after some necessary modifications were made. The majority of species tested were highly susceptible to epoxiconazole, ketoconazole and voriconazole (>95% of strains showed MICs ≤ 0.125 mg l(-1)). Most strains were also very susceptible to imazalil, although MIC values were generally higher than for the other azoles. Furthermore, certain Metschnikowia reukaufii strains displayed a 'trailing' phenotype (i.e. showed reduced but persistent growth at antifungal concentrations above the MIC), but this characteristic was dependent on test conditions. It was concluded that exposure to azoles may pose a risk for ecologically relevant yeasts from the Metschnikowia clade, and thus could potentially impinge on the tripartite interaction linking these fungi with plants and their insect pollinators.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Metschnikowia/efeitos dos fármacos , Agricultura/métodos , Animais , Insetos/microbiologia , Medicina/métodos , Metschnikowia/isolamento & purificação , Testes de Sensibilidade Microbiana , Plantas/microbiologia
3.
Syst Appl Microbiol ; 37(6): 402-11, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24794950

RESUMO

The taxonomic status of nine strains of the family Enterobacteriaceae isolated from floral nectar of wild Belgian, French, South African and Spanish insect-pollinated plants was investigated following a polyphasic approach. Confirmation that these strains belonged to the genus Rosenbergiella was obtained from comparative analysis of partial sequences of the 16S rRNA gene and other core housekeeping genes (atpD [ATP synthase ß-chain], gyrB [DNA gyrase subunit B] and rpoB [RNA polymerase ß-subunit]), DNA-DNA reassociation data, determination of the DNA G+C content and phenotypic profiling. Two strains belonged to the recently described species Rosenbergiella nectarea, while the other seven strains represented three novel species within the genus Rosenbergiella. The names Rosenbergiella australoborealis sp. nov. (with strain CdVSA 20.1(T) [LMG 27954(T)=CECT 8500(T)] as the type strain), Rosenbergiella collisarenosi sp. nov. (with strain 8.8A(T) [LMG 27955(T)=CECT 8501(T)] as the type strain) and Rosenbergiella epipactidis sp. nov. (with strain 2.1A(T) [LMG 27956(T)=CECT 8502(T)] as the type strain) are proposed. Additionally, the description of the genus Rosenbergiella is updated on the basis of new phenotypic and molecular data.


Assuntos
DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Genes Essenciais , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/química , Enterobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Fenótipo , Filogenia , Néctar de Plantas
4.
Microbiologyopen ; 2(4): 644-58, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23836678

RESUMO

Floral nectar of animal-pollinated plants is commonly infested with microorganisms, yet little is known about the microorganisms inhabiting the floral nectar of orchids. In this study, we investigated microbial communities occurring in the floral nectar of seven Epipactis (Orchidaceae) species. Culturable bacteria and yeasts were isolated and identified by partially sequencing the small subunit (SSU) ribosomal RNA (rRNA) gene and the D1/D2 domains of the large subunit (LSU) rRNA gene, respectively. Using three different culture media, we found that bacteria were common inhabitants of the floral nectar of Epipactis. The most widely distributed bacterial operational taxonomic units (OTUs) in nectar of Epipactis were representatives of the family of Enterobacteriaceae, with an unspecified Enterobacteriaceae bacterium as the most common. In contrast to previous studies investigating microbial communities in floral nectar, very few yeast species (mainly of the genus Cryptococcus) were observed, and most of them occurred in very low densities. Total OTU richness (i.e., the number of bacterial and yeast OTUs per orchid species) varied between 4 and 20. Cluster analysis revealed that microbial communities of allogamous species differed from those of autogamous and facultatively autogamous species. This study extends previous efforts to identify microbial communities in floral nectar and indicates that the floral nectar of the orchids investigated mainly contained bacterial communities with moderate phylogenetic diversity.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Fungos/classificação , Fungos/isolamento & purificação , Orchidaceae/microbiologia , Néctar de Plantas , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fungos/genética , Fungos/crescimento & desenvolvimento , Genes de RNAr , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Fúngico/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
5.
PLoS One ; 8(3): e56917, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536759

RESUMO

BACKGROUND: Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0-4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2-13) OTUs0.03 and 7.9 (range 2-16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. CONCLUSIONS/SIGNIFICANCE: We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar.


Assuntos
Abelhas , Microbiota , Néctar de Plantas , Polinização , Pulmonaria/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Abelhas/fisiologia , Bélgica , Biodiversidade , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Árvores , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...