Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(5): e0173121, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488446

RESUMO

In natural environments, antibiotics are important means of interspecies competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production; however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis, we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize antibiotic production within the population. The entire cascade is encoded in the lincomycin biosynthetic gene cluster (BGC) and consists of three lincomycin resistance proteins in addition to the transcriptional regulator LmbU: a lincomycin transporter (LmrA), a 23S rRNA methyltransferase (LmrB), both of which confer high resistance, and an ATP-binding cassette family F (ABCF) ATPase, LmrC, which confers only moderate resistance but is essential for antibiotic-induced signal transduction. Specifically, antibiotic sensing occurs via ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, ATPase activity of the ribosome-associated LmrC triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB, which reduces the amount of ribosome-bound antibiotic and thus fine-tunes the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many ribosome-targeting antibiotic BGCs encode an ABCF protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of the eight coproduced ABCF proteins of S. lincolnensis are clindamycin responsive, suggesting that the ABCF-mediated antibiotic signaling may be a widely utilized tool for chemical communication. IMPORTANCE Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. In particular, we show the dual character of the ABCF ATPase LmrC, which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotics to gene expression, where the 5' untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but also in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies functionally inconsistent ABCF family members involving antibiotic resistance proteins and translational regulators.


Assuntos
Adenosina Trifosfatases/metabolismo , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Lincomicina/biossíntese , Lincomicina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Metiltransferases , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Família Multigênica , Ribossomos/metabolismo , Transdução de Sinais , Streptomyces/metabolismo , Fatores de Transcrição
3.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816732

RESUMO

Vga(A) protein variants confer different levels of resistance to lincosamides, streptogramin A, and pleuromutilins (LSAP) by displacing antibiotics from the ribosome. Here, we show that expression of vga(A) variants from Staphylococcus haemolyticus is regulated by cis-regulatory RNA in response to the LSAP antibiotics by the mechanism of ribosome-mediated attenuation. The specificity of induction depends on Vga(A)-mediated resistance rather than on the sequence of the riboregulator. Fine tuning between Vga(A) activity and its expression in response to the antibiotics may contribute to the selection of more potent Vga(A) variants because newly acquired mutation can be immediately phenotypically manifested.


Assuntos
Farmacorresistência Bacteriana Múltipla , Estreptogramina A , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Lincosamidas , Macrolídeos , Ribossomos/genética
4.
Antimicrob Agents Chemother ; 59(6): 3611-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25801573

RESUMO

The ABCF family protein Msr(A) confers high resistance to macrolides but only low resistance to ketolides in staphylococci. Mutations in conserved functional regions of ClpX as well as deletion of clpX significantly increased Msr(A)-mediated resistance to the ketolide antibiotic telithromycin. ClpX is the chaperone component of the ClpXP two-component proteolytic system. Nevertheless, no changes in resistance were observed in a clpP knockout strain expressing msr(A), demonstrating that ClpX affects Msr(A) independently of ClpP.


Assuntos
Antibacterianos/farmacologia , Cetolídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrolídeos/farmacologia , Mutação
5.
Antimicrob Agents Chemother ; 59(2): 1360-4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25512423

RESUMO

Detailed mutational analysis examines the roles of individual residues of the Vga(A) linker in determining the antibiotic resistance phenotype. It defines a narrowed region of residues 212 to 220 whose composition determines the resistance specificity to lincosamides, pleuromutilins, and/or streptogramins A. From the analogy with the recently described function of the homologous ABC-F protein EttA as a translational factor, we infer that the Vga(A) linker interacts with the ribosome and directly or indirectly affects the binding of the respective antibiotic.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Diterpenos/farmacologia , Farmacorresistência Bacteriana Múltipla , Lincosamidas/farmacologia , Testes de Sensibilidade Microbiana , Compostos Policíclicos , Ribossomos/metabolismo , Estreptograminas/farmacologia , Pleuromutilinas
6.
Database (Oxford) ; 2013: bat069, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24089456

RESUMO

We present the Nencki Genomics Database, which extends the functionality of Ensembl Regulatory Build (funcgen) for the three species: human, mouse and rat. The key enhancements over Ensembl funcgen include the following: (i) a user can add private data, analyze them alongside the public data and manage access rights; (ii) inside the database, we provide efficient procedures for computing intersections between regulatory features and for mapping them to the genes. To Ensembl funcgen-derived data, which include data from ENCODE, we add information on conserved non-coding (putative regulatory) sequences, and on genome-wide occurrence of transcription factor binding site motifs from the current versions of two major motif libraries, namely, Jaspar and Transfac. The intersections and mapping to the genes are pre-computed for the public data, and the result of any procedure run on the data added by the users is stored back into the database, thus incrementally increasing the body of pre-computed data. As the Ensembl funcgen schema for the rat is currently not populated, our database is the first database of regulatory features for this frequently used laboratory animal. The database is accessible without registration using the mysql client: mysql -h database.nencki-genomics.org -u public. Registration is required only to add or access private data. A WSDL webservice provides access to the database from any SOAP client, including the Taverna Workbench with a graphical user interface.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Genômica , Estatística como Assunto , Fatores de Transcrição/metabolismo , Algoritmos , Animais , Sítios de Ligação/genética , Humanos , Camundongos , Motivos de Nucleotídeos , Ratos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...