Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1847(10): 1283-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188376

RESUMO

The photo-induced oxidation of TyrZ and TyrD by P680(•+), that involves both electron and proton transfer (PCET), has been studied in oxygen-evolving photosystem II from Thermosynechococcus elongatus. We used time-resolved absorption spectroscopy to measure the kinetics of P680(•+) reduction by tyrosine after the first flash given to dark-adapted PS II as a function of temperature and pH. The half-life of TyrZ oxidation by P680(•+) increases from 20ns at 300K to about 4µs at 150K. Analyzing the temperature dependence of the rate, one obtains a reorganization energy of about 770meV. Between 260K and 150K, the reduction of P680(•+) by TyrZ is increasingly replaced by charge recombination between P680(•+) and QA(•-). We propose that the driving force for TyrZ oxidation by P680(•+) decreases upon lowering the temperature. TyrZ oxidation cannot be excluded in a minority of PS II complexes at cryogenic temperatures. TyrD oxidation by P680(•+) with a half-life of about 30ns was observed at high pH. The pH dependence of the yield of TyrD oxidation can be described by a single protonable group with a pK of approximately 8.4. The rate of TyrD oxidation by P680(•+) is virtually identical upon substitution of solvent exchangeable protons with deuterons indicating that the rate is limited by electron transfer. The rate is independent of temperature between 5K and 250K. It is concluded that TyrD donates the electron to P680(•+) via PD2.

2.
Biochemistry ; 54(2): 389-403, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517969

RESUMO

The soluble NAD(+)-reducing hydrogenase (SH) from Ralstonia eutropha H16 belongs to the O2-tolerant subtype of pyridine nucleotide-dependent [NiFe]-hydrogenases. To identify molecular determinants for the O2 tolerance of this enzyme, we introduced single amino acids exchanges in the SH small hydrogenase subunit. The resulting mutant strains and proteins were investigated with respect to their physiological, biochemical, and spectroscopic properties. Replacement of the four invariant conserved cysteine residues, Cys41, Cys44, Cys113, and Cys179, led to unstable protein, strongly supporting their involvement in the coordination of the iron-sulfur cluster proximal to the catalytic [NiFe] center. The Cys41Ser exchange, however, resulted in an SH variant that displayed up to 10% of wild-type activity, suggesting that the coordinating role of Cys41 might be partly substituted by the nearby Cys39 residue, which is present only in O2-tolerant pyridine nucleotide-dependent [NiFe]-hydrogenases. Indeed, SH variants carrying glycine, alanine, or serine in place of Cys39 showed increased O2 sensitivity compared to that of the wild-type enzyme. Substitution of further amino acids typical for O2-tolerant SH representatives did not greatly affect the H2-oxidizing activity in the presence of O2. Remarkably, all mutant enzymes investigated by electron paramagnetic resonance spectroscopy did not reveal significant spectral changes in relation to wild-type SH, showing that the proximal iron-sulfur cluster does not contribute to the wild-type spectrum. Interestingly, exchange of Trp42 by serine resulted in a completely redox-inactive [NiFe] site, as revealed by infrared spectroscopy and H2/D(+) exchange experiments. The possible role of this residue in electron and/or proton transfer is discussed.


Assuntos
Cupriavidus necator/enzimologia , Hidrogenase/química , Hidrogenase/metabolismo , Oxigênio/metabolismo , Substituição de Aminoácidos , Domínio Catalítico , Cupriavidus necator/química , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/genética , Ferro/química , Ferro/metabolismo , Modelos Moleculares , NAD/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Enxofre/química , Enxofre/metabolismo
3.
Nat Commun ; 5: 4626, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25109607

RESUMO

Thermodynamically unfavourable electron transfers are enabled by coupling to an energy-supplying reaction. How the energy is transduced from the exergonic to the endergonic process is largely unknown. Here we provide the structural basis for an energy transduction process in the reductive activation of B12-dependent methyltransferases. The transfer of one electron from an activating enzyme to the cobalamin cofactor is energetically uphill and relies on coupling to an ATPase reaction. Our results demonstrate that the key to coupling is, besides the oxidation state-dependent complex formation, the conformational gating of the electron transfer. Complex formation induces a substitution of the ligand at the electron-accepting Co ion. Addition of ATP initiates electron transfer by provoking conformational changes that destabilize the complex. We show how remodelling of the electron-accepting Co(2+) promotes ATP-dependent electron transfer; an efficient strategy not seen in other electron-transferring ATPases.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Oxirredução , Vitamina B 12/química , Sítios de Ligação , Calorimetria , Respiração Celular , Cromatografia , Cristalização , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Elétrons , Íons , Ligantes , Modelos Moleculares , Nucleotídeos/química , Oxigênio/química , Estrutura Terciária de Proteína , Espectrofotometria , Thermoanaerobacter/enzimologia
4.
Nat Chem Biol ; 10(5): 378-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705592

RESUMO

Hydrogenases catalyze the reversible oxidation of H(2) into protons and electrons and are usually readily inactivated by O(2). However, a subgroup of the [NiFe] hydrogenases, including the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha, has evolved remarkable tolerance toward O(2) that enables their host organisms to utilize H(2) as an energy source at high O(2). This feature is crucially based on a unique six cysteine-coordinated [4Fe-3S] cluster located close to the catalytic center, whose properties were investigated in this study using a multidisciplinary approach. The [4Fe-3S] cluster undergoes redox-dependent reversible transformations, namely iron swapping between a sulfide and a peptide amide N. Moreover, our investigations unraveled the redox-dependent and reversible occurence of an oxygen ligand located at a different iron. This ligand is hydrogen bonded to a conserved histidine that is essential for H(2) oxidation at high O(2). We propose that these transformations, reminiscent of those of the P-cluster of nitrogenase, enable the consecutive transfer of two electrons within a physiological potential range.


Assuntos
Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxigênio/metabolismo , Catálise , Hidrogênio/metabolismo , Ligantes , Modelos Moleculares , Oxirredução
5.
J Am Chem Soc ; 136(10): 3904-18, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24517238

RESUMO

In Photosystem I (PS I) long-wavelength chlorophylls (LWC) of the core antenna are known to extend the spectral region up to 750 nm for absorbance of light that drives photochemistry. Here we present clear evidence that even far-red light with wavelengths beyond 800 nm, clearly outside the LWC absorption bands, can still induce photochemical charge separation in PS I throughout the full temperature range from 295 to 5 K. At room temperature, the photoaccumulation of P700(+•) was followed by the absorbance increase at 826 nm. At low temperatures (T < 100 K), the formation of P700(+•)FA/B(-•) was monitored by the characteristic EPR signals of P700(+•) and FA/B(-•) and by the characteristic light-minus-dark absorbance difference spectrum in the QY region. P700 oxidation was observed upon selective excitation at 754, 785, and 808 nm, using monomeric and trimeric PS I core complexes of Thermosynechococcus elongatus and Arthrospira platensis, which differ in the amount of LWC. The results show that the LWC cannot be responsible for the long-wavelength excitation-induced charge separation at low temperatures, where thermal uphill energy transfer is frozen out. Direct energy conversion of the excitation energy from the LWC to the primary radical pair, e.g., via a superexchange mechanism, is excluded, because no dependence on the content of LWC was observed. Therefore, it is concluded that electron transfer through PS I is induced by direct excitation of a proposed charge transfer (CT) state in the reaction center. A direct signature of this CT state is seen in absorbance spectra of concentrated PS I samples, which reveal a weak and featureless absorbance band extending beyond 800 nm, in addition to the well-known bands of LWC (C708, C719 and C740) in the range between 700 and 750 nm. The present findings suggest that nature can exploit CT states for extending the long wavelength limit in PSI even beyond that of LWC. Similar mechanisms may work in other photosynthetic systems and in chemical systems capable of photoinduced electron transfer processes in general.


Assuntos
Proteínas de Bactérias/química , Clorofila/química , Cianobactérias/química , Complexo de Proteína do Fotossistema I/química , Proteínas de Bactérias/metabolismo , Clorofila/metabolismo , Cianobactérias/metabolismo , Transporte de Elétrons , Luz , Modelos Moleculares , Oxirredução , Processos Fotoquímicos , Complexo de Proteína do Fotossistema I/metabolismo , Temperatura
6.
J Biol Chem ; 289(11): 7982-93, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24448806

RESUMO

The membrane-bound [NiFe] hydrogenase (MBH) supports growth of Ralstonia eutropha H16 with H2 as the sole energy source. The enzyme undergoes a complex biosynthesis process that proceeds during cell growth even at ambient O2 levels and involves 14 specific maturation proteins. One of these is a rubredoxin-like protein, which is essential for biosynthesis of active MBH at high oxygen concentrations but dispensable under microaerobic growth conditions. To obtain insights into the function of HoxR, we investigated the MBH protein purified from the cytoplasmic membrane of hoxR mutant cells. Compared with wild-type MBH, the mutant enzyme displayed severely decreased hydrogenase activity. Electron paramagnetic resonance and infrared spectroscopic analyses revealed features resembling those of O2-sensitive [NiFe] hydrogenases and/or oxidatively damaged protein. The catalytic center resided partially in an inactive Niu-A-like state, and the electron transfer chain consisting of three different Fe-S clusters showed marked alterations compared with wild-type enzyme. Purification of HoxR protein from its original host, R. eutropha, revealed only low protein amounts. Therefore, recombinant HoxR protein was isolated from Escherichia coli. Unlike common rubredoxins, the HoxR protein was colorless, rather unstable, and essentially metal-free. Conversion of the atypical iron-binding motif into a canonical one through genetic engineering led to a stable reddish rubredoxin. Remarkably, the modified HoxR protein did not support MBH-dependent growth at high O2. Analysis of MBH-associated protein complexes points toward a specific interaction of HoxR with the Fe-S cluster-bearing small subunit. This supports the previously made notion that HoxR avoids oxidative damage of the metal centers of the MBH, in particular the unprecedented Cys6[4Fe-3S] cluster.


Assuntos
Proteínas de Bactérias/química , Hidrogenase/biossíntese , Rubredoxinas/química , Catálise , Membrana Celular/enzimologia , Cupriavidus necator/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Metais/química , Modelos Químicos , Oxirredução , Oxigênio/química , Plasmídeos/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Biochemistry ; 51(36): 7040-2, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22924695

RESUMO

Activation of the corrinoid [Fe-S] protein (CoFeSP), involved in reductive CO(2) conversion, requires the reduction of the Co(II) center by the [Fe-S] protein RACo, which according to the reduction potentials of the two proteins would correspond to an uphill electron transfer. In our resonance Raman spectroscopic work, we demonstrate that, as a conformational gate for the corrinoid reduction, complex formation of Co(II)FeSP and RACo specifically alters the structure of the corrinoid cofactor by modifying the interactions of the Co(II) center with the axial ligand. On the basis of various deletion mutants, the potential interaction domains on the partner proteins can be predicted.


Assuntos
Corrinoides/química , Corrinoides/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ligação Proteica , Análise Espectral Raman
9.
J Magn Reson ; 214(1): 237-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22196894

RESUMO

We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ∼60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 µl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 µs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 µs using a 2500 W amplifier. Selected applications of the resonator are presented.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Iluminação/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Manejo de Espécimes/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Luz
10.
Drug Metab Dispos ; 39(10): 1939-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21705476

RESUMO

Aldehyde oxidase (AOX) is characterized by a broad substrate specificity, oxidizing aromatic azaheterocycles, such as N¹-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. In the past decade, AOX has been recognized increasingly to play an important role in the metabolism of drugs through its complex cofactor content, tissue distribution, and substrate recognition. In humans, only one AOX gene (AOX1) is present, but in mouse and other mammals different AOX homologs were identified. The multiple AOX isoforms are expressed tissue-specifically in different organisms, and it is believed that they recognize distinct substrates and carry out different physiological tasks. AOX is a dimer with a molecular mass of approximately 300 kDa, and each subunit of the homodimeric enzyme contains four different cofactors: the molybdenum cofactor, two distinct [2Fe-2S] clusters, and one FAD. We purified the AOX homolog from mouse liver (mAOX3) and established a system for the heterologous expression of mAOX3 in Escherichia coli. The purified enzymes were compared. Both proteins show the same characteristics and catalytic properties, with the difference that the recombinant protein was expressed and purified in a 30% active form, whereas the native protein is 100% active. Spectroscopic characterization showed that FeSII is not assembled completely in mAOX3. In addition, both proteins were crystallized. The best crystals were from native mAOX3 and diffracted beyond 2.9 Å. The crystals belong to space group P1, and two dimers are present in the unit cell.


Assuntos
Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Escherichia coli/enzimologia , Fígado/enzimologia , Aldeído Oxirredutases/genética , Animais , Dicroísmo Circular/métodos , Cristalização/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Escherichia coli/genética , Cinética , Camundongos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
11.
Nat Chem Biol ; 7(5): 310-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21390036

RESUMO

Hydrogenases are essential for H(2) cycling in microbial metabolism and serve as valuable blueprints for H(2)-based biotechnological applications. However, most hydrogenases are extremely oxygen sensitive and prone to inactivation by even traces of O(2). The O(2)-tolerant membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha H16 is one of the few examples that can perform H(2) uptake in the presence of ambient O(2). Here we show that O(2) tolerance is crucially related to a modification of the internal electron-transfer chain. The iron-sulfur cluster proximal to the active site is surrounded by six instead of four conserved coordinating cysteines. Removal of the two additional cysteines alters the electronic structure of the proximal iron-sulfur cluster and renders the catalytic activity sensitive to O(2) as shown by physiological, biochemical, spectroscopic and electrochemical studies. The data indicate that the mechanism of O(2) tolerance relies on the reductive removal of oxygenic species guided by the unique architecture of the electron relay rather than a restricted access of O(2) to the active site.


Assuntos
Cupriavidus necator/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Biocatálise , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Domínio Catalítico , Cupriavidus necator/enzimologia , Cisteína/química , Cisteína/metabolismo , Eletroquímica , Eletroforese em Gel de Poliacrilamida , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Oxigênio/química , Oxigênio/metabolismo , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Chemphyschem ; 11(6): 1215-24, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20376875

RESUMO

[NiFe] hydrogenases are widespread among microorganisms and catalyze the reversible cleavage of molecular hydrogen. However, only a few bacteria, such as Ralstonia eutropha H16 (Re), synthesize [NiFe] hydrogenases that perform H(2) cycling in the presence of O(2). These enzymes are of special interest for biotechnological applications. To gain further insight into the mechanism(s) responsible for the remarkable O(2) tolerance, we employ FTIR and EPR spectroscopy to study mutant variants of the membrane-bound hydrogenase (MBH) of Re-carrying substitutions of a particular cysteine residue in the vicinity of the [NiFe] active site that is characteristic of O(2)-tolerant membrane-bound [NiFe] hydrogenases. We demonstrate that these MBH variants, despite minor changes in the electronic structure and in the interaction behavior with the embedding protein matrix, display all relevant catalytic and noncatalytic states of the wild-type enzyme, as long as they are still located in the cytoplasmic membrane. Notably, in the oxidized Ni(r)-B state and the fully reduced forms, the CO stretching frequency increases with increasing polarity of the respective amino acid residue at the specific position of the cysteine residue. We purified the MBH mutant protein with a cysteine-to-alanine exchange to apparent homogeneity as dimeric enzyme after detergent solubilization from the membrane. This purified version displays increased oxygen sensitivity, which is reflected by detection of the oxygen-inhibited Ni(u)-A state, an irreversible inactive redox state, and the light-induced Ni(a)-L state even at room temperature.


Assuntos
Hidrogenase/química , Oxigênio/química , Substituição de Aminoácidos , Domínio Catalítico , Cupriavidus necator/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/genética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Chemphyschem ; 11(6): 1258-64, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20340122

RESUMO

The chemistry of bacterial photosynthesis begins in the photosynthetic reaction centre (RC), a protein complex containing a series of electron donor and acceptor molecules. Although the pigments of the RC can absorb light to operate the photochemistry, the bulk of the light is captured in special pigmented proteins, the light harvesting complexes (LHCs), that then transfer the energy to the RC. Ordinarily, the LHCs do not participate in chemical reactions during photosynthesis such that LHCs do not become oxidised upon light irradiation. However, upon chemical oxidation in the dark, cation radicals of bacteriochlorophyll (BChl) can be formed in the light harvesting complex 1 (LH1) of Rhodobacter sphaeroides. As observed by continuous-wave electron-paramagnetic resonance (EPR), the charges of the BChl(+) cations migrate rather freely about the LH1 complex as in a molecular wire. Remarkably, these LH1 molecular wires continue to function in the frozen, solid state. To investigate the nature of electron-hole transfer and to corroborate the process as revealed by EPR, electron-nuclear double resonance (ENDOR) was recorded at 80 K. ENDOR observed only monomeric bacteriochlorophyll cations. Their signal intensity decreased with increased oxidation while the EPR signal narrowed and increased in size. At the increased oxidation state, the possibility of spin-spin exchange between two BChl(+)s within LH1 versus electron-hole transfer is addressed. An energy landscape of the BChl(+)s in the LH1 is proposed to explain the EPR and ENDOR results.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Complexos de Proteínas Captadores de Luz/química , Rhodobacter sphaeroides/enzimologia , Transporte de Elétrons , Oxirredução
15.
Phys Chem Chem Phys ; 12(9): 2139-48, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20165762

RESUMO

The geometric and electronic structures of the active sites in the oxidized Ni(r)-B state of the [NiFe] hydrogenases from Ralstonia eutropha H16 and Desulfovibrio vulgaris Miyazaki F were investigated in pulsed EPR and ENDOR experiments at two different microwave frequencies (X- and Q-band). Two hyperfine-couplings were clearly resolved in the frozen solution spectra arising from the beta-protons of the nickel-coordinating cysteine residues Cys549 and Cys586 from the Desulfovibrio vulgaris and Ralstonia eutropha hydrogenase, respectively. ESEEM spectroscopic experiments reveal the presence of a histidine in the second coordination sphere of the Ni. The spectroscopic data indicate that the electronic structures of the [NiFe] centers in both hydrogenases are identical in the Ni(r)-B state. However, additional spin couplings of the active site to further paramagnetic centers were identified for the Ralstonia eutropha hydrogenase. The respective couplings could be clearly resolved and simulated. The results from this study are discussed in view of the exceptional O(2)-tolerance of the Ralstonia hydrogenase.


Assuntos
Cupriavidus necator/enzimologia , Desulfovibrio vulgaris/enzimologia , Hidrogenase/química , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Oxirredução , Marcadores de Spin
16.
J Biol Chem ; 285(11): 8268-77, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20075073

RESUMO

Dark operative protochlorophyllide oxidoreductase (DPOR) catalyzes the light-independent two-electron reduction of protochlorophyllide a to form chlorophyllide a, the last common precursor of chlorophyll a and bacteriochlorophyll a biosynthesis. During ATP-dependent DPOR catalysis the homodimeric ChlL(2) subunit carrying a [4Fe-4S] cluster transfers electrons to the corresponding heterotetrameric catalytic subunit (ChlN/ChlB)(2), which also possesses a redox active [4Fe-4S] cluster. To investigate the transient interaction of both subcomplexes and the resulting electron transfer reactions, the ternary DPOR enzyme holocomplex comprising subunits ChlN, ChlB, and ChlL from the cyanobacterium Prochlorococcus marinus was trapped as an octameric (ChlN/ChlB)(2)(ChlL(2))(2) complex after incubation with the nonhydrolyzable ATP analogs adenosine 5'-(gamma-thio)triphosphate, adenosine 5'-(beta,gamma-imido)triphosphate, or MgADP in combination with AlF(4)(-). Additionally, a mutant ChlL(2) protein, with a deleted Leu(153) in the switch II region also allowed for the formation of a stable octameric complex. Furthermore, efficient complex formation required the presence of protochlorophyllide. Electron paramagnetic resonance spectroscopy of ternary DPOR complexes revealed a reduced [4Fe-4S] cluster located on ChlL(2), indicating that complete ATP hydrolysis is a prerequisite for intersubunit electron transfer. Circular dichroism spectroscopic experiments indicated nucleotide-dependent conformational changes for ChlL(2) after ATP binding. A nucleotide-dependent switch mechanism triggering ternary complex formation and electron transfer was concluded. From these results a detailed redox cycle for DPOR catalysis was deduced.


Assuntos
Trifosfato de Adenosina/metabolismo , Bacterioclorofilas/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fotossíntese/fisiologia , Prochlorococcus/enzimologia , Catálise , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons/fisiologia , Ferro/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Subunidades Proteicas/metabolismo , Enxofre/metabolismo
17.
J Biol Chem ; 284(52): 36462-36472, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19801638

RESUMO

The bidirectional [NiFe] hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 was purified to apparent homogeneity by a single affinity chromatography step using a Synechocystis mutant with a Strep-tag II fused to the C terminus of HoxF. To increase the yield of purified enzyme and to test its overexpression capacity in Synechocystis the psbAII promoter was inserted upstream of the hoxE gene. In addition, the accessory genes (hypF, C, D, E, A, and B) from Nostoc sp. PCC 7120 were expressed under control of the psbAII promoter. The respective strains show higher hydrogenase activities compared with the wild type. For the first time a Fourier transform infrared (FTIR) spectroscopic characterization of a [NiFe] hydrogenase from an oxygenic phototroph is presented, revealing that two cyanides and one carbon monoxide coordinate the iron of the active site. At least four different redox states of the active site were detected during the reversible activation/inactivation. Although these states appear similar to those observed in standard [NiFe] hydrogenases, no paramagnetic nickel state could be detected in the fully oxidized and reduced forms. Electron paramagnetic resonance spectroscopy confirms the presence of several iron-sulfur clusters after reductive activation. One [4Fe4S](+) and at least one [2Fe2S](+) cluster could be identified. Catalytic amounts of NADH or NADPH are sufficient to activate the reaction of this enzyme with hydrogen.


Assuntos
Proteínas de Bactérias/química , Hidrogenase/química , Ferro/química , NADP/química , Níquel/química , Synechocystis/enzimologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Expressão Gênica , Hidrogenase/biossíntese , Hidrogenase/genética , Hidrogenase/isolamento & purificação , Nostoc/enzimologia , Nostoc/genética , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Synechocystis/genética
18.
FEBS J ; 276(10): 2762-74, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19368556

RESUMO

Three DNA regions carrying genes encoding putative homologs of xanthine dehydrogenases were identified in Escherichia coli, named xdhABC, xdhD, and yagTSRQ. Here, we describe the purification and characterization of gene products of the yagTSRQ operon, a molybdenum-containing iron-sulfur flavoprotein from E. coli, which is located in the periplasm. The 135 kDa enzyme comprised a noncovalent (alpha beta gamma) heterotrimer with a large (78.1 kDa) molybdenum cofactor (Moco)-containing YagR subunit, a medium (33.9 kDa) FAD-containing YagS subunit, and a small (21.0 kDa) 2 x [2Fe2S]-containing YagT subunit. YagQ is not a subunit of the mature enzyme, and the protein is expected to be involved in Moco modification and insertion into YagTSR. Analysis of the form of Moco present in YagTSR revealed the presence of the molybdopterin cytosine dinucleotide cofactor. Two different [2Fe2S] clusters, typical for this class of enzyme, were identified by EPR. YagTSR represents the first example of a molybdopterin cytosine dinucleotide-containing protein in E. coli. Kinetic characterization of the enzyme revealed that YagTSR converts a broad spectrum of aldehydes, with a preference for aromatic aldehydes. Ferredoxin instead of NAD(+) or molecular oxygen was used as terminal electron acceptor. Complete growth inhibition of E. coli cells devoid of genes from the yagTSRQ operon was observed by the addition of cinnamaldehyde to a low-pH medium. This finding shows that YagTSR might have a role in the detoxification of aromatic aldehydes for E. coli under certain growth conditions.


Assuntos
Aldeído Oxirredutases/metabolismo , Coenzimas/metabolismo , Nucleotídeos de Citosina/metabolismo , Escherichia coli/enzimologia , Metaloproteínas/metabolismo , Periplasma/enzimologia , Pteridinas/metabolismo , Pterinas/metabolismo , Acroleína/análogos & derivados , Acroleína/metabolismo , Cromatografia em Gel , Nucleotídeos de Citosina/química , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Cinética , Cofatores de Molibdênio , Óperon , Pterinas/química
19.
PLoS One ; 4(4): e5348, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19401776

RESUMO

Mouse aldehyde oxidase (mAOX1) forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Escherichia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.


Assuntos
Aldeído Oxidase/química , Aldeído Oxidase/genética , Aldeído Oxidase/metabolismo , Substituição de Aminoácidos , Animais , Domínio Catalítico/genética , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Ácido Glutâmico/química , Técnicas In Vitro , Cinética , Camundongos , Modelos Químicos , Mutagênese Sítio-Dirigida , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/genética , Especificidade da Espécie , Especificidade por Substrato , Xantina Desidrogenase/química , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
20.
J Biol Chem ; 284(24): 16264-16276, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19304663

RESUMO

This study provides the first spectroscopic characterization of the membrane-bound oxygen-tolerant [NiFe] hydrogenase (MBH) from Ralstonia eutropha H16 in its natural environment, the cytoplasmic membrane. The H2-converting MBH is composed of a large subunit, harboring the [NiFe] active site, and a small subunit, capable in coordinating one [3Fe4S] and two [4Fe4S] clusters. The hydrogenase dimer is electronically connected to a membrane-integral cytochrome b. EPR and Fourier transform infrared spectroscopy revealed a strong similarity of the MBH active site with known [NiFe] centers from strictly anaerobic hydrogenases. Most redox states characteristic for anaerobic [NiFe] hydrogenases were identified except for one remarkable difference. The formation of the oxygen-inhibited Niu-A state was never observed. Furthermore, EPR data showed the presence of an additional paramagnetic center at high redox potential (+290 mV), which couples magnetically to the [3Fe4S] center and indicates a structural and/or redox modification at or near the proximal [4Fe4S] cluster. Additionally, significant differences regarding the magnetic coupling between the Nia-C state and [4Fe4S] clusters were observed in the reduced form of the MBH. The spectroscopic properties are discussed with regard to the unusual oxygen tolerance of this hydrogenase and in comparison with those of the solubilized, dimeric form of the MBH.


Assuntos
Cupriavidus necator/enzimologia , Hidrogenase/química , Hidrogenase/metabolismo , Oxigênio/metabolismo , Catálise , Catequina/metabolismo , Citoplasma/metabolismo , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/genética , Ferro/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Níquel/metabolismo , Oxirredução , Plasmídeos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...