Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535909

RESUMO

The aim of this study was to evaluate the acute lethality and chronic sublethal effects of lithium (Li) on Rhinella arenarum tadpoles as model organisms. First a 96 h toxicity assay was performed by exposing tadpoles to Li concentrations from 44.08 to 412.5 mg L-1 to estimate the mortality, and lethal and sublethal effects. Another bioassay was carried out by exposing tadpoles to two environmentally relevant Li concentrations (2.5 and 20 mg L-1) for one and two weeks. The sublethal effects of Li on tadpoles were evaluated by analyzing biochemical, genotoxic, and physiological biomarkers. The mortality in Li-exposed tadpoles increased over time. The median lethal concentration (LC50) ranged from 319.52 (281.21-363.05) mg L-1 at 48 h to 66.92 (52.76-84.89) mg L-1 at 96 h. Exposure to Li at 2.5 and 20 mg L-1 induced alterations in enzymes related to detoxification, antioxidant, and hepatic mechanisms, endocrine disruption of thyroid hormones, genotoxicity, and effects on the physiology of the heart and gastrointestinal systems. Tadpoles exposed to the highest concentration in the chronic bioassay (20 mg L-1 Li), which is the concentration commonly recorded in Li mining sites, showed significant mortality after one week of exposure. These results warn about the high ecotoxicological risk of Li as a contaminant of emerging concern for amphibians.

2.
Phys Chem Chem Phys ; 25(36): 24761-24769, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671503

RESUMO

Capacity retention is a critical property to enhance in electrochemical storage systems applied to renewable energy. In lithium-sulfur (Li-S) batteries, the capacity fade resulting from the shuttle effect of polysulfides is a major obstacle to their practical application. Sepiolite, an eco-friendly earth-abundant clay with suitable surface chemistry for anchoring and retaining various molecules and structures, was studied as a cathode additive to mitigate the shuttle effect using experimental and theoretical approaches. Electrochemical measurements, spectroscopy, and ab initio calculations were performed to describe the mechanism and interfaces involved in polysulfide retention using 2 wt% of sepiolite as an additive in Li-S batteries. The results showed that the addition of sepiolite significantly improved the capacity retention during battery cycling. Spectroscopic analysis revealed that the effective sepiolite-polysulfide interface was governed by oxidized sulfur species. Additionally, ab initio studies showed a highly exothermic adsorption both inside and outside the sepiolite pore. This study demonstrates the potential use of eco-friendly, low-cost, non-toxic, natural, and abundant materials as additives to increase capacity retention.

3.
Chemosphere ; 309(Pt 1): 136554, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174726

RESUMO

The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.


Assuntos
Herbicidas , Poluentes Químicos da Água , Animais , Larva , Acetilcolinesterase , Butirilcolinesterase , Catalase , Ecossistema , Tiroxina , Poluentes Químicos da Água/toxicidade , Herbicidas/toxicidade , Bufo arenarum , Glutationa Transferase , Biomarcadores , Glifosato
4.
Sci Total Environ ; 804: 150177, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520929

RESUMO

The effects of glyphosate (GLY)-based and glufosinate ammonium (GA)-based herbicides (GBH and GABH, respectively) and polyethylene microplastic particles (PEMPs) on Scinax squalirostris tadpoles were assessed. Tadpoles were exposed to nominal concentrations of both herbicides (from 1.56 to 100 mg L-1) and PEMPs (60 mg L-1), either alone or in combination, and toxicity evaluated at 48 h. Acetylcholinesterase (AChE), carboxylesterase (CbE), and glutathione-S-transferase (GST) activities were analyzed at the three lowest concentrations (1.56, 3.12 and 6.25 mg L-1, survival rates >85%) of both herbicides alone and with PEMPs. Additionally, the thermochemistry of the interactions between the herbicides and polyethylene (PE) was analyzed by Density Functional Theory (DFT). The median-lethal concentration (LC50) was 43.53 mg L-1 for GBH, 38.56 mg L-1 for GBH + PEMPs, 7.69 for GABH, and 6.25 mg L-1 for GABH+PEMPs. The PEMP treatment increased GST but decreased CbE activity, whereas GBH and GABH treatments increased GST but decreased AChE activity. In general, the mixture of herbicides with PEMPs increased the effect observed in the individual treatments: the highest concentration of GBH + PEMPs increased GST activity, whereas GABH+PEMP treatments decreased both AChE and CbE activities. DFT analysis revealed spontaneous interactions between the herbicides and PE, leading to the formation of bonds at the herbicide-PE interface, significantly stronger for GA than for GLY. The experimental and theoretical findings of our study indicate that these interactions may lead to an increase in toxicity when pollutants are together, meaning potential environmental risk of these combinations, especially in the case of GA.


Assuntos
Herbicidas , Poluentes Químicos da Água , Acetilcolinesterase , Aminobutiratos , Animais , Anuros , Produtos Agrícolas , Glicina/análogos & derivados , Herbicidas/toxicidade , Larva , Microplásticos , Plantas Geneticamente Modificadas , Plásticos , Poluentes Químicos da Água/toxicidade , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...