Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 148: 104492, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32916243

RESUMO

After sequence comparison, it was found that there are multiple amino acid mutations in pre-M and envelope (E) protein of Japanese encephalitis virus vaccine strain comparison with wild type (WT) strain SA14. It is generally acknowledged it is the mutations that have caused the virulence attenuation of vaccine strain, but lack of sufficient experimental evidences. For a better understanding of the mechanism of attenuation of Japanese encephalitis virus (JEV), in this study, we assessed whether prM/E is critical neurovirulence determinants of JEV with infectious cDNA clones technique. Substitutions prM/E of vaccine strain with that of WT SA14 did significantly increase the virulence of JEV to the similar level of wild type SA14, and simultaneously, replacement prM/E of JEV WT strain SA14 with that of vaccine strain SA14-14-2 decreased the virulence of JEV significantly to the similar level of vaccine stain. The results indicate that the prM/E protein is the crucial virulence determinant of Japanese encephalitis virus, although other proteins take part in the process to some extent.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Vírus da Encefalite Japonesa (Espécie)/genética , Humanos , Vacinas Atenuadas , Proteínas do Envelope Viral/genética , Virulência
2.
Can J Infect Dis Med Microbiol ; 2019: 9179308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944684

RESUMO

The attenuated Japanese encephalitis virus (JEV) live vaccine SA14-14-2 prepared from wild-type (WT) strain SA14 was licensed to prevent Japanese encephalitis (JE) in 1989 in China. Many studies showed that the premembrane (prM) and envelope (E) protein were the crucial determinant of virulence and immunogenicity of JEV. So we are interested in whether the substitution of prM/E of JEV WT SA14 with those of vaccine strain SA14-14-2 could decrease neurovirulence and prevent the challenge of JEV WT SA14. Molecular clone technique was used to replace the prM/E gene of JEV WT strain SA14 with those of vaccine strain SA14-14-2 to construct the infectious clone of chimeric virus (designated JEV SA14/SA14-14-2), the chimeric virus recovered from BHK21 cells upon electrotransfection of RNA into BHK21 cells. The results showed that the recovered chimeric virus was highly attenuated in mice, and a single immunization elicited strong protective immunity in a dose-dependent manner. This study increases our understanding of the molecular mechanisms of neurovirulence attenuation and immunogenicity of JEV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA