Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1369885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962782

RESUMO

Introduction: Studies focusing on coopetition and dynamic capabilities have expanded significantly over the past several decades. Coopetition strategy and dynamic capabilities are increasingly recognised as sources of sustained competitive advantage. The purpose of this paper is to provide a better understanding of the factors driving growth performance in digital healthcare ventures by examining the role of coopetition, exploration and exploitation capabilities, and environmental uncertainty. While numerous studies have examined the competitive advantage of coopetition, its specific contribution to the growth of ventures in the digital realm remains less explored. Clarifying the strategic role of coopetition in driving growth performance is critical for delineating the intricate relationship between coopetition and growth performance, particularly in the context of digital healthcare ventures. To fill in this research gap, this study uses coopetition theory and dynamic capabilities theory to look at how exploration and exploitation capabilities, as well as environmental uncertainty, affect the relationship between coopetition and growth performance in digital healthcare ventures. Methods: We collected a total of 338 questionnaires from Chinese digital healthcare ventures between March 2023 and August 2023. We conducted data analysis using SPSS 26.0 and its macro-program PROCESS. Results: Our results confirm that coopetition has a positive effect on growth performance in digital healthcare ventures. Furthermore, exploration and exploitation capabilities fully mediate the relationship between coopetition and growth performance. Moreover, environmental uncertainty significantly and distinctively moderates the impact of exploration and exploitation capabilities on growth performance. Discussion: This study contributes to the existing literature by providing deeper insight into the relationship between coopetition and growth performance in digital healthcare ventures. It also offers important practical implications for public health improvement and socio-economic development.


Assuntos
Tecnologia Digital , Humanos , Inquéritos e Questionários , China , Comportamento Exploratório , Atenção à Saúde
2.
Int J Clin Exp Pathol ; 13(7): 1590-1600, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782677

RESUMO

Our previous research confirmed the repression of SMADs signaling pathway inhibits the invasion, migration, and EMT in breast cancer MCF-7 and SKBR-3 cell lines by DNMT1 up-regulating CLDN6, but the mechanism is unclear. Western blot was performed to detect the expression of SMAD2, SMAD3, P-SMAD2, and P-SMAD3. Then RT-PCR was carried out to examine the expression of tight junctions and cell adhesion molecule E-cadherin. According to the gene sequence of Claudin6, shRNA was linked with the green fluorescent protein-expressing eukaryotic expression vector pGC silencer TMΜ6/Neo/GFP, and it was transfected into breast cancer MCF-7 cells and SKBR-3 cells. RT-PCR and western blot were applied to verify the Claudin6 gene-silencing effect. We observed cellular morphology with inverted microscope, analyzed the capacity for clone formation, and detected transepithelial electrical resistance. The level of MMP2, and MMP9 in the cells treated with or without SB431542 and MCF-7-shGFP, MCF-7-shClaudin-6, SKBR-3-shGFP, and SKBR-3-shClaudin-6 cells pretreated with SB431542 were examined by RT-PCR and western blot. The expressions of Claudin-6, occludin, and cell adhesion molecule E-cadherin were enhanced by SB431542. SB431542 transformed mesenchymal cell morphology into epithelial cell morphology, inhibited capacity for clone formation, increased transepithelial electrical resistance, and downregulated the expression of MMP2 and MMP9. Knock down of Claudin6 can abolish SB431542 effects. We conclude that Claudin6 mediates the effects of SB431542 on the biologic phenotypes of the breast cancer cells we studied. We speculate Claudin6-mediated the SB431542 inhibition of invasion, migration, and EMT in breast cancer cells via MMP2/9.

3.
Cell Physiol Biochem ; 31(4-5): 728-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23711498

RESUMO

AIMS: Alterations in calcium homeostasis in the intracellular endo/sarcoplasmic reticulum (ER/SR) and mitochondria of cardiomyocytes cause cell death via the SR and mitochondrial apoptotic pathway, contributing to ventricular dysfunction. However, the role of the calcium-sensing receptor (CaR) in cardiac hypertrophy and heart failure has not been studied. This study examined the possible involvement of CaR in the SR and mitochondrial apoptotic pathway in an experimental model of heart failure. METHODS AND RESULTS: In Wistar rats, cardiac hypertrophy and heart failure were induced by subcutaneous injection of isoproterenol (Iso). Calindol, an activator of CaR, and calhex231, an inhibitor of CaR, were administered by caudal vein injection. Cardiac remodeling and left ventricular function were then analyzed in these rats. After 2, 4, 6 and 8 weeks after the administration of Iso, the rats developed cardiac hypertrophy and failure. The cardiac expression of ER chaperones and related apoptotic proteins was significantly increased in the failing hearts. Furthermore, the expression of ER chaperones and the apoptotic rate were also increased with the administration of calindol, whereas the expression of these proteins was reduced with the treatment of calhex231. We also induced cardiac hypertrophy and failure via thoracic aorta constriction (TAC) in mice. After 2 and 4 weeks of TAC, the expression of ER chaperones and apoptotic proteins were increased in the mouse hearts. Furthermore, Iso induced ER stress and apoptosis in cultured cardiomyocytes, while pretreatment with calhex231 prevented ER stress and protected the myocytes against apoptosis. To further investigate the effect of CaR on the concentration of intracellular calcium, the calcium concentration in the SR and mitochondria was determined with Fluo-5N and x-rhod-1 and the mitochondrial membrane potential was examined with JC-1 using laser confocal microscopy. After treatment with Iso for 48 hours, activation of CaR reduced [Ca(2+)]SR, increased [Ca(2+)]m, decreased the mitochondrial membrane potential, increased the expression of ER stress chaperones and related apoptotic proteins, and induced the release of cytochrome c from the mitochondria. CONCLUSIONS: Our results demonstrated that CaR activation caused Ca(2+) release from the SR into the mitochondria and induced cardiomyocyte apoptosis through the SR and mitochondrial apoptotic pathway in failing hearts.


Assuntos
Apoptose , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Receptores de Detecção de Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Benzamidas/farmacologia , Cálcio/metabolismo , Cardiomegalia/patologia , Cicloexilaminas/farmacologia , Citocromos c/metabolismo , Insuficiência Cardíaca/patologia , Indóis/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Isoproterenol/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Miócitos Cardíacos/metabolismo , Naftalenos/farmacologia , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/antagonistas & inibidores
4.
Mol Cell Biochem ; 371(1-2): 187-98, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001844

RESUMO

In the study, we investigated how exogenous H(2)S (hydrogen sulfide) influenced streptozotocin (STZ)-induced diabetic myocardial injury through cardiac mitochondrial protection and nitric oxide (NO) synthesis in intact rat hearts and primary neonatal rat cardiomyocytes. Diabetes was induced by STZ (50 mg/kg) and the daily administration of 100 µM NaHS (sodium hydrosulfide, an H(2)S donor) in the diabetes + NaHS treatment group. At the end of 4, 8, and 12 weeks, the morphological alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, the production of reactive oxygen species (ROS) and the level of NO were measured. The expressions of cystathionine-γ-lyase (CSE), caspase-3 and -9, the mitochondrial NOX4 and cytochrome c were analyzed by western blotting. The results showed the cardiac function injured, morphological changes and the apoptotic rate increased in the diabetic rat hearts. In the primary neonatal rat cardiomyocytes of high glucose group, ROS production was increased markedly, whereas the expression of CSE and the level of NO was decreased. However, treatment with NaHS significantly reversed the diabetic rat hearts function, the morphological changes and decreased the levels of ROS and NO in the primary neonatal rat cardiomyocytes administrated with high glucose group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and -9 and inhibited the release of cytochrome c from mitochondria in the primary neonatal rat cardiomyocytes. In conclusion, H(2)S is involved in the attenuation of diabetic myocardial injury through the protection of cardiac mitochondria.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias/metabolismo , Miocárdio/patologia , Animais , Caspase 3/genética , Caspase 3/metabolismo , Cistationina gama-Liase/metabolismo , Citocromos c/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
5.
Cell Biol Int ; 36(10): 937-43, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22708524

RESUMO

Nuclear Ca(2+) plays a pivotal role in the regulation of gene expression. IP3 (inositol-1,4,5-trisphosphate) is an important regulator of nuclear Ca(2+). We hypothesized that the CaR (calcium sensing receptor) stimulates nuclear Ca(2+) release through IICR (IP3-induced calcium release) from perinuclear stores. Spontaneous Ca(2+) oscillations and the spark frequency of nuclear Ca(2+) were measured simultaneously in NRVMs (neonatal rat ventricular myocytes) using confocal imaging. CaR-induced nuclear Ca(2+) release through IICR was abolished by inhibition of CaR and IP3Rs (IP3 receptors). However, no effect on the inhibition of RyRs (ryanodine receptors) was detected. The results suggest that CaR specifically modulates nuclear Ca(2+) signalling through the IP(3)R pathway. Interestingly, nuclear Ca(2+) was released from perinuclear stores by CaR activator-induced cardiomyocyte hypertrophy through the Ca(2+)-dependent phosphatase CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) pathway. We have also demonstrated that the activation of the CaR increased the NRVM protein content, enlarged cell size and stimulated CaN expression and NFAT nuclear translocation in NRVMs. Thus, CaR enhances the nuclear Ca(2+) transient in NRVMs by increasing fractional Ca(2+) release from perinuclear stores, which is involved in cardiac hypertrophy through the CaN/NFAT pathway.


Assuntos
Cálcio/metabolismo , Núcleo Celular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Receptores de Detecção de Cálcio/metabolismo , Animais , Calcineurina/metabolismo , Cálcio/análise , Sinalização do Cálcio , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/análise , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição NFATC/metabolismo , Ratos , Ratos Wistar
6.
Mol Cell Biochem ; 358(1-2): 335-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21766206

RESUMO

The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that activates intracellular effectors; for example, it causes inositol phosphate (IP) and 1,2 diacylglycerol (DAG) accumulation, stimulating the release of intracellular calcium and the activation of the protein kinase Cs (PKCs). The activation of CaSR by ischemia/reperfusion (I/R) induces cardiomyocyte apoptosis through the mitochondrial apoptotic pathway; however, the underlying mechanisms remain unclear. In this study, rat hearts were subjected to 30 min of ischemia followed by 2 h of reperfusion in the presence of a CaSR activator, GdCl(3). Our results revealed that, under these conditions, the expression of CaSR was increased, the number of apoptotic cardiomyocytes was significantly increased (as shown by terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay) and the cells with a typical apoptotic morphology were observed using transmission electron microscopy. Our data further showed that mitochondria isolated from hearts that had undergone I/R combined with GdCl(3) exhibited a significant increase in the translocation of phosphorylated PKCδ to the mitochondria, an increase in cytochrome c (cyt c) release from the mitochondria and a marked decrease in mitochondrial potential. The administration of rottlerin, an inhibitor of PKCδ, significantly reduced reperfusion-induced apoptosis, phospho-PKCδ translocation to the mitochondria and the release of cyt c from the mitochondria. Thus, the involvement of CaSR in cardiac apoptosis through the mitochondrial pathway during I/R with GdCl(3) is related to phospho-PKCδ translocation to the mitochondria.


Assuntos
Apoptose , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Proteína Quinase C-delta/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Citocromos c/metabolismo , Marcação In Situ das Extremidades Cortadas , Espaço Intracelular/metabolismo , Masculino , Microscopia Confocal , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/enzimologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Fosforilação , Transporte Proteico , Ratos , Ratos Wistar , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...