Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 21(1): 214, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243715

RESUMO

BACKGROUND: Acetic acid tolerance is crucial for the development of robust cell factories for conversion of lignocellulosic hydrolysates that typically contain high levels of acetic acid. Screening mutants for growth in medium with acetic acid is an attractive way to identify sensitive variants and can provide novel insights into the complex mechanisms regulating the acetic acid stress response. RESULTS: An acetic acid biosensor based on the Saccharomyces cerevisiae transcription factor Haa1, was used to screen a CRISPRi yeast strain library where dCas9-Mxi was set to individually repress each essential or respiratory growth essential gene. Fluorescence-activated cell sorting led to the enrichment of a population of cells with higher acetic acid retention. These cells with higher biosensor signal were demonstrated to be more sensitive to acetic acid. Biosensor-based screening of the CRISPRi library strains enabled identification of strains with increased acetic acid sensitivity: strains with gRNAs targeting TIF34, MSN5, PAP1, COX10 or TRA1. CONCLUSIONS: This study demonstrated that biosensors are valuable tools for screening and monitoring acetic acid tolerance in yeast. Fine-tuning the expression of essential genes can lead to altered acetic acid tolerance.


Assuntos
Técnicas Biossensoriais , Proteínas de Saccharomyces cerevisiae , Ácido Acético/metabolismo , Carioferinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 10(1): 14605, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884066

RESUMO

Recent advances in CRISPR/Cas9 based genome editing have considerably advanced genetic engineering of industrial yeast strains. In this study, we report the construction and characterization of a toolkit for CRISPR activation and interference (CRISPRa/i) for a polyploid industrial yeast strain. In the CRISPRa/i plasmids that are available in high and low copy variants, dCas9 is expressed alone, or as a fusion with an activation or repression domain; VP64, VPR or Mxi1. The sgRNA is introduced to the CRISPRa/i plasmids from a double stranded oligonucleotide by in vivo homology-directed repair, allowing rapid transcriptional modulation of new target genes without cloning. The CRISPRa/i toolkit was characterized by alteration of expression of fluorescent protein-encoding genes under two different promoters allowing expression alterations up to ~ 2.5-fold. Furthermore, we demonstrated the usability of the CRISPRa/i toolkit by improving the tolerance towards wheat straw hydrolysate of our industrial production strain. We anticipate that our CRISPRa/i toolkit can be widely used to assess novel targets for strain improvement and thus accelerate the design-build-test cycle for developing various industrial production strains.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Engenharia Genética/métodos , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Genoma Fúngico , Plasmídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...